SYNTHESIS, CHARACTERIZATION AND
PHARMACOLOGICAL STUDIES OF COPPER
COMPLEXES DERIVED FROM FLAVONE DERIVATIVES

A THESIS

Submitted by
K. NAGASHRI

in partial fulfilment for the degree of
DOCTOR OF PHILOSOPHY

Under the Guidance of
Dr. J. Joseph

DEPARTMENT OF CHEMISTRY
NOORUL ISLAM UNIVERSITY
NOORUL ISLAM CENTRE FOR HIGHER EDUCATION
KUMARACOIL, TAMILNADU–INDIA 629 180

JUNE 2013
Certified that this THESIS entitled “Synthesis, characterization and pharmacological studies of copper complexes derived from flavone derivatives” submitted for the award of the Degree of Doctor of Philosophy in Chemistry of the Noorul Islam Center for Higher Education is a bonafide research work done by Mr/Mrs/Miss. K.NAGASHRI under my supervision.

Further certified that to the best of my knowledge, the work has not been part of any other thesis or dissertation for which any degree or diploma has been conferred by any University or Institution.

Signature of the Research Scholar Signature of the Supervisor

Mrs. K.Nagashri Dr.J.Joseph, M.Sc, M.Phil., Ph.D.,
DST INSPIRE fellow Asst. Professor
Department of Chemistry
Noorul Islam Centre for Higher Education
(Noorul Islam University)
Kumaracoil-629180
Tamilnadu
ABSTRACT

In the design of biologically active metallo-organic molecules, it is of vital importance the choice of appropriate ligands (particularly heterocyclic molecules), which affect the thermodynamic and kinetic stability as well as solubility and lipophilicity of the metal complexes. In the search for potential chemotherapeutic agents, a considerable effort has been made on the design and development of chemotherapeutic agents that contain heterocyclic structures as their main structural motif.

Among the heterocyclic molecules, Flavone and its derivatives have exhibited numerous biological and pharmacological activities. In the past few decades, the research work was focused on the design and development of medicinally important molecules. The structural modifications on heterocyclic scaffold may yield effective therapeutic agents without side effects.

Keeping these facts in mind, in the present study was focused on design, synthesis and structural characterization of hydroxyflavone derivatives and their copper complexes. The chemically charaterised copper complexes were subjected to antimicrobial, DNA studies, antioxidant, SOD, anti-inflammatory and anti tuberculosis activities. The observed structural and biological features were discussed.

The removal of carbonyl group in the flavone nucleus with different substituted aromatic amines improved structural and biological activities. The introduction of electron withdrawing on the phenyl ring was exhibited enhance biological activity. The replacement of “O” by “N” at position 1 with aliphatic amines has increased pharmacological activity of ligands. The incorporation of copper ion, the biological activity was further enchaned.

In summary, the whole work contributes to the search of new molecules (copper complexes of flavone derivatives) with systematic approaches to combat multidrug resistant organisms and may be behaved as chemotherapeutic agents.
DEDICATED TO MY MOTHER

K.LEELAVATHY
ACKNOWLEDGEMENT

My first and foremost acknowledgement goes to ALMIGHTY GOD for the successful completion of this Research Work.

With profound gratitude, I express my sincere thanks to my research supervisor Dr. J. JOSEPH, Asst. Professor, Department of Chemistry, Noorul Islam Centre for Higher Education (Noorul Islam University), Kumaracoil, who inspired me to do the research on Schiff base metal complexes and helped me a lot in all my occasions to complete the work.

Words are insufficient to express my deep sense of gratitude and heartfelt thanks to Dr. A.P. MAJEED KHAN, Chancellor, Noorul Islam Centre for Higher Education (Noorul Islam University), Kumaracoil, for having permitted me to pursue my research work and given me the opportunity and necessary facilities for my research programme in the University.

I am deeply indebted to Prof. K. PERUMALSAMY, Vice-Chancellor, Noorul Islam Centre for Higher Education and Kumaracoil for offering me an opportunity for fulfilling my desire to obtain a Ph.D. degree in chemistry.

I thank with the deep sense of gratitude to Prof. S. SIVA SUBRAMANIAN, Advisor, Noorul Islam Centre for Higher Education and Kumaracoil for his motivation and encouragement in my research career.

I am indebted to Dr. C. MANICKAM, Registrar, Noorul Islam Centre for Higher Education (Noorul Islam University) for his tireless support and encouragement. I would like to extend my sincere thanks to Dr. B.T. RAJAN, Deputy Registrar for his moral support.
My whole hearted thanks are due to Dr. **M. SANKARANARAYANA PILLAI**, Head, Department of Chemistry, Noorul Islam Centre for Higher Education (Noorul Islam University) for his support, encouragement and motivation towards the completion of the dissertation.

I express my sincere thanks to Dr. **M.SIVAPRAGASH**, Director-Research for their entire help and support to finish my Research in successful manner. I thank Dr. **N.CHANDRASHEKAR**, Pro Vice Chancellor, Noorul Islam Centre for Higher Education (Noorul Islam University) for his encouragement and support in my research career.

I would like to thank Dr. **T.P.D.RAJAN**, Scientist, NIIST, Trivandrum who rendered their valuable suggestions.

I thank all the members of the faculty of the Department of Chemistry, Noorul Islam Centre for Higher Education (Noorul Islam University) for their help and encouragement during this work.

A special mention has to be made to my friend Ms. **G.Boomadevi Janaki** for her help and useful suggestions for doing the research. I acknowledge the timely help rendered by Mr. **ANISH D SHIVDAS and Mr.RAHUL**, NIIST, Trivandrum.

Sincere thanks to all the faculty members and Lab Assistants (Mrs. **K.LATHA, Mrs.N.CHITRAKALA and Mr.M.THANAPPAN**) of our departments for their support in the successful completion of this thesis.

I express my gratitude and indebtedness to Dr. **Suresh Das**, Director, NIIST, Trivandrum for his help and cooperation during my project work.

It gives a great pleasure to acknowledge the research work was funded by DST, New Delhi under INSPiRE fellowship (IF 10544)
Words fail me to express my appreciation to my Husband Mr. C. ARUN KUMAR for his dedication, love and persistent confidence in me, has taken the load off my shoulder. I gratefully thank to my family members and my relatives in Kalpakkam for their encouragement during my study period. I wish to express my loveable thanks to my mother (Mrs. LEELAVATHY) for her precious support and encouragement in my all moments.

(K. NAGASHRI)
CONTENTS

CHAPTER I INTRODUCTION

1.1 Choice of chelating ligands
1.2 Pharmacological Significance of Heterocycles Scaffold
1.3 Basics of flavone
1.4 Schiff base and its complexes
1.5 Biological significance of copper
1.6 Infectious diseases
1.7 Free radicals

d 1.7.1 Superoxide (O$_2^-$)
1.8 Oxidative stress

d 1.8.1 Defence mechanism against oxidative stress
1.9 Literature review
1.10 Scope of present investigations
1.11 References

CHAPTER II EXPERIMENTAL

2.1 General experimental methods and techniques
2.2 Materials employed
2.3 Purification of solvents
2.4 Preparation of supporting electrolyte
2.5 Preparation of stock solutions
2.5.1. Tris-hydrochloride buffer

2.5.2 Preparation of Tris acetate EDTA buffer (TAE) (50 X)

2.5.3 Preparation of Gel loading dye (Bromophenol blue)

2.6 Analytical methods of characterization

2.7.1 Elemental analysis

2.7.2 Determination of copper

2.7.3 Determination of chloride contents

2.7.4 IR spectra

2.7.5 Electronic absorption spectra

2.7.6 NMR spectra

2.7.7 Mass spectra

2.7.8 Molar conductance measurements

2.7.9 Magnetic susceptibility and magnetic moments

2.7.10 Electron paramagnetic resonance spectra

2.7.11 SEM

2.7.12 Thermogravimetric study

2.7.13 Powder XRD

2.7 Biological studies

2.7.1 Antibacterial activity

2.7.2 Antifungal activity

2.7.3 DNA studies

2.7.3.1 Electronic absorption method

2.7.3.2 Thermal denaturation method

2.7.3.3 Viscosity method

2.7.3.4 Electrochemical method

2.7.4 Antioxidant activity

2.7.4.1 DPPH method

2.7.5 SOD activity

2.7.5.1 Inhibition of superoxide radicals by riboflavin photoreduction method
CHAPTER III
SYNTHESIS OF LIGANDS AND THEIR COPPER COMPLEXES

3.1 Introduction
3.2 Section I
 3.2.1 General Procedure for the synthesis of ligands
 3.2.2 Preparation of copper complexes of Ligands (3-42)
3.3 Section II
 3.3.1 Preparation of Ligand (L43-L47)
 3.3.2 Preparation of copper complexes of Ligands (43-47)
3.4 Section II
 3.4.1 Preparation of Ligand (L43-L47)
 3.4.2 Preparation of copper complexes of Ligands (43-47)
3.5 Section II
 3.5.1 Preparation of Ligand (L43-L47)
 3.5.2 Preparation of copper complexes of Ligands (43-47)
3.6 References

CHAPTER IV
Structural characterization and electrochemical studies of copper complexes of flavone derivatives

4.1 Introduction
4.2 Experimental
4.3 Results and discussion
4.3.1 Molar conductance
4.3.2 IR
4.3.3 NMR spectra
4.3.4 Electronic absorption spectra
4.3.5 ESR spectra
4.3.6 Mass spectra
4.3.7 TGA
4.3.8 SEM
4.3.9 Powder XRD
4.3.10 Electrochemical study

4.4 References

CHAPTER V Biochemical and pharmacological studies

5.1 Introduction
5.2 Experimental
5.3 Structural elucidations of synthesized compounds
5.4 Biological studies
 5.5.1 Antimicrobial activity
 5.5.2 DNA studies
 5.5.2.1 Electronic absorption method
 5.5.2.2 Thermal denaturation method
 5.5.2.3 Viscosity method
 5.5.2.4 Electrochemical method
 5.5.3 Antioxidant activity
 5.5.3.1 DPPH method
 5.5.4 SOD activity
 5.5.4.1 Inhibition of superoxide radicals by riboflavin photoreduction method
 5.5.5 Effect of Copper complexes with HSA
 5.5.6 Determination of Partition coefficient
 5.5.7 Determination of minimal inhibitory concentration
5.5.8 Anti-inflammatory Activity

5.5 References

CHAPTER VI SUMMARY AND CONCLUSIONS

PUBLICATIONS
LIST OF TABLES

Table 4.1 Electronic absorption spectra of ligands and their copper complexes
Table 4.2 ESR spectral data of the copper complexes
Table 5.1 MIC values of ligands and their copper complexes against microbial species
Table 5.2 Antioxidant activity for the copper(II) complexes and standards
Table 5.3 Superoxide scavenging activity for the copper(II) complexes and native CuZnSOD
Table 5.4 Partition coefficients of ligands
Table 5.5 Partition coefficients of copper complexes
Table 5.6 Antimycobacterial activities of effective ligands and their copper complexes
LIST OF FIGURES

Fig. 1.1 Structure of flavone
Fig. 4.1 IR spectrum of ligand
Fig. 4.2 IR spectrum of copper complex
Fig. 4.3 IR spectrum of ligand
Fig. 4.4 IR spectrum of copper complex
Fig. 4.5 1H-NMR spectrum of ligand (L$_3$)
Fig. 4.6 1H-NMR spectrum of ligand (L$_3$)
Fig. 4.7 13C-NMR spectrum of ligand (L$_3$)
Fig. 4.8 UV-Vis., spectrum of ligand
Fig. 4.9 UV-Vis., spectrum of copper complex
Fig. 4.10 UV-Vis., spectrum of ligand
Fig. 4.11 UV-Vis., spectrum of copper complex
Fig. 4.12 The d-orbital splitting of Cu(II) from square planar to octahedral geometry
Fig. 4.13 UV-Vis., spectrum of copper complex
Fig. 4.14 ESR spectrum of copper complex at 300 K
Fig. 4.15 ESR spectrum of copper complex at 77 K
Fig. 4.1 SEM images of ligand
Fig. 4.2 SEM images of copper complex
Fig. 4.1 SEM images of ligand
Fig. 4.2 SEM images of copper complex
Fig. 4.1 SEM images of ligand
Fig. 4.2 SEM images of copper complex
Fig. 4.1 SEM images of ligand
Fig. 4.2 SEM images of copper complex
Fig. 4.10 Mass spectrum of ligand
Fig. 4.11 Mass spectrum of copper complex
Fig. 4.10 Mass spectrum of ligand
Fig. 4.11 Mass spectrum of copper complex
Fig. 4.13 X-ray diffraction of CuL1 complex
Fig. 4.14 Cyclic voltammogram of copper complex in DMSO solution
Fig. 5.1 Antioxidant activities of ligands and their copper complexes
Fig. 5.2 SOD of effective complexes
Fig. 5.3 UV–vis, spectra of copper complex in the absence and in the presence of DNA.
Fig. 5.4 Plot of relative viscosity versus [complex]/[DNA] effect of copper complex on the viscosity of CT DNA at 25 ± 0.1 °C. Copper complex = 0–100 μM. [DNA] = 50 μM.
Fig. 5.5 Thermal denaturation graph of copper complex L3
Fig. 5.6 Cyclic voltammogram of copper complex in the presence and absence of DNA
Fig. 5.7 Agarose gel electrophoresis of copper complexes
lane 1: DNA alone;
lane 2: DNA + [CuL1(OAc)H2O] complex + H2O2
lane 3: DNA + [CuL2(H2O)] complex + H2O2;
lane 4: DNA + [CuL3(H2O)] complex + H2O2;
lane 5: DNA + [CuL4(H2O)] complex + H2O2;
lane 6: DNA + [CuL5(H2O)] complex + H2O2.
Fig. 5.8 Assay of hydroxyl radical production of 2-deoxy-D-ribose (400 mM) by formation 2-thiobarbiturate with copper complexes (100 mM) in 1 mm phosphate buffer. Reaction conditions:
1. activation by 50 mM 2-mercaptoethanol and 50 mM H$_2$O$_2$, simultaneous addition with each copper complex;
2. activation by 50 mM 2-mercaptoethanol and 50 mM H$_2$O$_2$, simultaneous addition with each copper complex;
3. activation by 50 mM 2-mercaptoethanol and 50 mM H$_2$O$_2$, after each copper complex has been reacted with DNA for 30 min and
4. quenching of activation reaction of 50 mM 2-mercaptoethanol and 50 mM H$_2$O$_2$ by 250 mM mannitol.
Figure 5.9 Rhodamine B degradation followed by decrease of absorbance at 552 nm, pH 8.1 in 10 mM phosphate buffer: a) in the presence of copper complex and b) in the presence of copper complex, H$_2$O$_2$
LIST OF SCHEMES

Scheme 3.1 The schematic outline of synthesis of ligands (L^2 - L^{42})
Scheme 3.2 The schematic outline of synthesis of ligands (L^{43} - L^{51})
Scheme 3.3 The schematic outline of synthesis of ligands (L^{51} - L^{56})
Scheme 3.4 The schematic outline of synthesis of ligands (L^{57} - L^{60})
Scheme 4.1 The proposed mass fragmentation pattern of copper complex
Scheme 4.2 Proposed reaction mechanism for catalytic conversion
Scheme 5.1 Schematic diagram depicts the structural variations influence SOD activities
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-DNA</td>
<td>Calf thymus deoxyribonucleic acid</td>
</tr>
<tr>
<td>EB</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>DPPH</td>
<td>1, 1-Diphenyl-2-picryl-hydrazyl</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitrotetrazolium blue</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron Spin Resonance</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>