Geographically the region extends between 22°49' to 24°08' N latitudes and 78°21' is located almost in the central east part of the Madhya Pradesh. The Tropic of cancer passes through the middle of the region and divides the region into nearly equal halves. Its greatest length from southwest to northeast is 190.0 Kms and its maximum width from west to east is 115.9 Kms. The Jabalpur region is bounded in the northeast by Katni district, in the southeast by Mandla district in the south by Mandla and Seoni district, in the southwest by Narsinghpur district and in the west and northwest by Damoh district.

Administratively the region is divided into six tahsils i.e. Jabalpur, Kundam, Shahpora, Patan, Majholi and Sihora. Relative location of these tahsils is as follows Jabalpur tahsil in the south, Kundam in the southeast, Shahpora in the southwest, Patan in the west, Majholi in the north and Sihora in the northeast. The name of the region is derived from the Arabic word Jabal which means a rock. The Jabalpur town is built partially on rocky site.

Jabalpur region is one of the highly developed regions of the state and is well connected with different parts of the country as well as of the state through railways and roads. Mumbai-Allahabad-Howrah broad gauge trunk route of west-central railway with double lines traverses through the region from northeast to southwest; Jabalpur-Gondia narrow gauge section (48 Kms) provides a direct accessibility with the adjoining areas of Maharashtra state. The region is also served by National Highways i.e. N.H. 7 (Nagpur-Mirzapur) and
N.H. 12 (Jabalpur-Bhopal) ensuring the direct accessibility with two states. The state Highway No. 10, 22 and 32 together are providing intra and inter regional accessibility to the region. Recently the region has been connected with important cities of the country through air transport. The region also has a military airstrip and also has a airport at Dumna about 15 Kms from Jabalpur on Pig Coal road.

Jabalpur region is well known for its multidimensional activities due to industrialisation, mining, urbanisation, agricultural development, educational activities, transport network and changing composition of population. The region has made a considerable headway in the development of industrial activities as compared to other regions of the state. The region is well known for various important defence establishments and industrial area. Jabalpur is a major class I city and a leading urban area of the Madhya Pradesh. In last few decades with hypsographic and demographic characteristics along with diversified industrial and economic activities, the region has emerged as an independent and distinguished region in the state.

GEOGRAPHICAL APPEARANCES

Jabalpur region is consists of a long narrow plain running from northeast to southwest and from all sides is bounded by highlands forming as offshoot from the great valley of the Narmada. The southwestern plain Known as Haveli is one of the richest and most fertile area of the region.
The western side of the region is bounded by the sandstone cliffs of the Vindhyas in the Bhitigarh range or by its spurs. In the southeast, the Haveli lies on extensive area covered by deccan trap and is an important feature of the district. Within this tract the hill sides marked by conspicuous terraces along with the table like formation of the hill summits, the prevalence of long grass, and the paucity of trees. Almost all bushes and trees of the region are deciduous.

**GEOLOGY**

The attractions of the region for the geologist, mineralogist, and paleontologist, owing to the large number of geological formations represent, the wide variety of minerals considering with high economic value, this vary fact Jabalpur region requires a careful and special treatment as compared with other regions of the state.

The main geological formations found in the region include.

<table>
<thead>
<tr>
<th>Age</th>
<th>Group</th>
<th>Series/State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent</td>
<td>(10) Newer alluvial soils, etc.</td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td>(9) Older Narbada alluvium</td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td>(8) Laterite</td>
<td></td>
</tr>
<tr>
<td>Upper cretaceous to Eocene</td>
<td>(7) Deccan Traps</td>
<td></td>
</tr>
<tr>
<td>Upper cretaceous</td>
<td>(6) Lameta Bends</td>
<td></td>
</tr>
<tr>
<td>Upper Jurassic</td>
<td>(5) Upper Goundwana system Jabalpur series</td>
<td></td>
</tr>
<tr>
<td>Late pre-cambrian (Purana)</td>
<td>(4) Upper vindhyan</td>
<td>Upper Bhandera series</td>
</tr>
<tr>
<td>Early plaeozoic (Vindhyan system)</td>
<td>(3) Lower vindhyan semri series</td>
<td>Lower Bhandera series, Rewa series, Rohtas stage, Kheinjua stage, Porcellaite stage, Basal stage</td>
</tr>
<tr>
<td>Pre-cambrian (Archaean)</td>
<td>(2) Bijawar series Granites and Gneisses</td>
<td></td>
</tr>
</tbody>
</table>

**Source:** Jabalpur District : Gazetteer, page 7.
Granites and Gneisses

The granites and Gneisses are found in isolated patches at intervals along the northeast to southeast line from near Lemeta Ghat on the Narmada through Jabalpur for some Kms to the northeast. The old Gond Castle known as the Madan Mahal stands on the hill is an important example. The gneisses and granites are grouped with the Dharwars as of Archaean Age. Among these two divisions of Archaen the granite is considered to be the younger, extensively found in various parts of the Narmada valley. It is possible that there is also a certain amount of true gneiss found in region possibly older than the Dharwars. The granite is considered to be younger than the Bijawar however some of the gneisses in the region are much older than Bijawar's.

Bijawar Series

There is a continuous exposure of the Bijawar series and consists of crystalline limestones quartzites and schists are found in the north at the head of the Narmada valley. The Bijawars though are not much disturbed but are in an advanced stage of metamorphism. The limestones generally have low undulating dips but are much controlled locally. The thickness of the exposed formations is approximately less than 360 metres are found in the north and northeastern parts of Jabalpur and the beds have been divided into the following stages.

1. Majhauli stage
2. Bhitri stage
3. Lora stage
4. Chanderdip stage

The Majhuli and Bhitri stage have been grouped into one. The group consists of limestone, shales and greenstones. The limestone of the area is delomitic and is graded into fine grained marbles. The famous marble rocks of the Narmada gorge, form almost perpendicular cliffs rising up to the height of over 35 metres on both banks. They also contain dolomite rocks metamorphosed only to a moderate extent. The colour of these rocks is glassy white with smoky shades and has blackish or reddish linings.

The Gosalpur sub-stage is principally composed of quartzites and has some bonds of conglomerates. The Sihora sub-stage consist of salty shales, haematite, Jaspers and quartzites. Beded hematite and quartzites are well developed in the Lora Range east of Sihora. The Chanderdip stage consists of mica schists limestones.

**Vindhyan Range**

The Vindhyan system is younger than the cuddapah and is named after the Vindhyan range located in the north of the Narmada valley. This system is divided into two divisions i.e. (i) The lower Vindhyan and (ii) The upper Vindhyan.

**Lower Vindhyan**

The lower Vindhyan formation is found in a shape of the strip in the northeastern part of the region and slightly to the southwest to Katni district is on the outer margins of the study region. The formation is further divided into four stages Basal, Porcellanite,
Kheinjua and Rohtas. Out of these the Rohtas stage with a thickness of 120 to 210 metres consists of limestone is found with shale beds in the region. The Kheinjua stage is well developed and is found in the extreme northeast corner of the region. The rocks of this stage are principally shales and sandstones, while three thick bands of limestone are found in the Kheinjua range.

The porcellavite stage has been treated as a thin band running for about 18.0 kms in the northeast direction from Barhi to Amarpur in the northeast corner with another band about some kms to the north. The Basal stage is found as a thin and immediately in the southeast of the Amarpur porcellavite band. It consists of sandstone and conglomerate overlain by Shales and limestone.

**Upper Vindhyan**

The whole of the northwestern boundary of the region is partially occupied by upper Vindhyan. This range extends from the north, northeast to the southwest along the boundary of study region. The uppermost division is formed by the upper Bhander which consists of Shales, limestones and sandstones. The upper Rewah forms a thin frings of rock on the southern side of the Bhanders from where they seem to be separated by a strike fault through a large portion of their course in the region. The upper Rewah consists of massive to flaggy sandstones and forms the range of hills Known as the Kaimurs. The boundary between the Rewah and the Dharwars to the southwest of Bilahri and separates to lower Vindhyan and
Dharwars. The upper Bhanders are approximately 195 metres thick, followed by lower Bhanders and upper Rewah with 440 metres and 300 metres respectively.

The name Gondwana was derived from the kingdom of Gonds, which was and is still known as the main tribe belt in the central part of the state. The Gondwana group is classified into two subdivision viz (i) The Lower Gondwana and (ii) the upper Gondwana. Only upper Gondwana rock are found in the study region. The features related to the mature stage of the Narmada can be seen in the southern parts of the study area. The Jabalpur series overlies the Pachmarhis of the Satpura series and is divided into into two stages, where the upper stage is named after the Jabalpur town as Jabalpur range.

The Jabalpur beds are basically soft massive sandstones. Some of these have white and yellow Shales, with some minor lignite and coal besides few limestone bands.

**Lameta Beds**

The Lameta Beds, named after the Lameta chat near Jabalpur town, are estuarine beds occurring below the traps. Geologically, Lameta beds belong to the cretaceous age. The rocks have yielded a rich Jurassic flora and are overlain by estuarine deposits known as the Lameta beds. These rocks lie unconformable on the older formations and are found usually underlying the Deccan trap. Not only near Jabalpur but also at many other localities in the region.
Lameta were subjected to denudation before the eruption of the lava. The chief constituent rocks found in these beds are limestone with subordinate sandstone and clays.

**Deccan Trap**

The Deccan traps were formed by the outpouring of lava, which spread over the parts of Maharashtra, Gujarat and Madhya Pradesh. The Trap is characterized by flat topped hills and step like terraces.

This is the great formation of horizontally bedded basaltic lava that is found principally along the southeastern border of the region approaching very close to Jabalpur town. This part of the district may be regarded as the northern edge of the Satpura range and the height of many hills varies from 488 to over 610 metres. The Duria hill with 739.93 metres is the highest point in the region with many geodic cavities in the traps contain wide varieties of zeolites, agates and jaspers.

**Laterite**

Most of the laterite masses in the region are spread over the low undulating country between the Bhitigarh range of hill to the south with the ridges of Kaimur and Bhandar formation in the north. Laterite forms irregular patches roughly horizontal and is mainly found in the Sihora tahsil located on north side of the study region.

**Recent Alluvium**

Alluvium of Pleistocene and recent period are found in the Narmada valley of the study region. The Narmada deposits are composed of reddish and brownish clays with intercalation of gravel
and Kankar. They are separated from the underlying rocks by a small thickness of sandy and conglomeratic beds, where the lower alluvium has not suffered to extensive denudation prior to the deposition of the upper alluvium. The clay are usually overlain by small thickness of sandy and gravelly beds.

**PHYSIOGRAPHY**

The Jabalpur region consists of a long narrow plain running from southwest to northeast flanked by the Bhandar and Kaimur ranges of the Vindhyan system found on the west along with various hills and spurs of the Mahadeo range and that of the Maikal range on east. The Bhitigarh range and a few subsidiary hills intrude upon in the middle of the region and practically join Vindhyan and the Satpura system, which together forms a great central watershed of India. Thus physiographically the region can be divided into five natural regions i.e.

1. The Vindhyan tract;
2. The Southeastern plateau of the Satpura and their extension.
3. The Bhitigarh range and the associated hill areas;
4. The Haveli and
5. The northeastern valleys of the Mahanadi.

**The Vindhyan Tract**

The Bhandar and the Kaimur ranges, which belongs to the Vindhyan plateau presents a very abrupt, steep, and erosional
landscape, almost vertical towards the Jabalpur. The structure of a tract has flat topped syncline and its present day topography is a clear escarpment and forms the boundary between Jabalpur and Damoh districts and its foots, very close to it flows Hiran leaving a narrow strip of land between its right bank and the hill. Near Katangi, the Bhander range throws of a number of spurs and becomes a complex mass of hills varying in elevation from 457 to 610 metres, shredding out towards west. Eastwards a few scattered out crops occur in the direction of Lara hills and Bhitigarh range beyond Sihora.

The Kaimur range appears at Katangi and runs nearly parallel to and a little east of the Bhander Scarp from the boundary between Jabalpur and Damoh for some distance. Near the western bend of Sahar Nallah the ring deflects more to the east leaving a stretch of hilly country to the northwest and extends towards the Bhainsa Kund peak (635.8 metres) beyond Bahoriband and Kaliha Khured. At Jhukehi, the strike of the Kaimurs is displaced, producing the only gap in the whole length of the Vindhyan. The gap has proved to be of great advantage in connecting the Jabalpur areas with Mirzapur and the Jabalpur-Allahabad section of Bombay Calcutta trunk route maintained by west-central Railways.

**The Southeastern Plateau of Satpura and their Extensions**

The Narmada cuts across the Satpura south of Jabalpur and the hills fan out along the southeastern boundary of the region. The complete area of the Satpura in the southeast is converted by the
volcanic lava and presents the typical features of the Deccan trap area, viz flat topped hills, hill sides marked by conspicuous terraces and the prevalence of long grass on the black volcanic soils on the slopes or in the bottom areas of the valley.

The area is marked by the dominance of teak along its southern boundary. The general height of the tableland is about 457 metres south of Narmada and about 533 metres east of Jabalpur. Some of its peaks in the southeastern parts rise more than 610 metres. The region is generally wild and broken. At the northeastern extremity of the trap area the Satpuras continue to the north almost parallel to the Mahanadi river which serves as the eastern boundary of the region. The area presents a succession of low hills on the metamorphic rocks of the transition type.

**The Bhitrigarh Range and the Associated Hills**

The Bhitrigarh range runs across the middle of the region from southwest to northeast. It consists of metamorphic rocks and meets the spurs of the Satpura nearly at right angle. In the southwest part of the region it appears abruptly from the alluvial plain as an outcrop and has a general elevation of 457 metres to 549 metres above mean sea level. The highest peak of Bhitrigarh range is about 623.6 metres high. The range constitutes the watershed between the catchment of the Hiron in the south and that of the Katni in the north. Lora hill an isolated outcrop of the range lies a few kms west of it. The broken country between the Bitrigarh range and the Kaimur is studded with hills of varying heights and magnitudes.
West of Sleemanabad mainly the region consist of a sequence of ridges with poor soil cover on their slopes and thicker and better soil in the natural basins in scattered form. An undulating plain of poor soil dotted with numerous Sandstone hills, extends from the Bhitrigarh range in the south to the Deodongua hills in the north.

**The Haveli**

The area lies between the blundering high lands of the vindhyas in the west and Satpura in the east is the low lying Narmada Hiran plain, Known as the Haveli. It extends from the southwestern boundary of the region up to the Saroli Majhgaun track beyond the railway lines. The Haveli is a plain tract and most of the area is covered with very rich block cotton soil. The plain is embanked by fields which is a predominant feature of the Haveli and lies in the valley of the Narmada and the Hiran. The Haveli area is well known as the grainary of the study region as well as of the state.

**The Northeast Valleys**

The northern plain is bordered by the Kaimur in the north and in the west. The Kanerijua hills traverse the region north of the Mahanadi from southwest to northeast. The southeastern and eastern parts of the region are covered with forests. Its off shoots to the north and the south has effected the quality of the soil which otherwise is alluvial. The most fertile land is found in the valley lies between the Kaimur and the Kahenjua hills and also along the bank of the Mahanadi river.
There are some other narrow valleys along the northern part of Jabalpur town in the region. Notably among these are those Aloni, Ken and Patna.

**ELEVATION**

The elevation of the plain areas varies from 475 to 610 metres. Jabalpur railway station is 398.3 metres high while the Madan Mahal, at distance of 6.4 kms south of Jabalpur railway station has a height of 469.7 metres. On the other hand the Dharmpura near Bargi (Bagrai) few kilometres southeast of Panagar is 494.4 metres high while the height varies at Gosalpur 480 metres, Sihora 586.5 metres and Pipors 595.74 metres. The highest points found in the southern parts of the region extends upto the tablelands of the Satpuras, where the village Banjaria is close to the hill with a trigonometrical station is 678 metres high, where as Duria has an elevation of 739.9 metres.

The peaks in the western part of the region have an elevation varying from 610.0 to 762.5 metres in the vicinity of Katangi. Katangi itself has an elevation of 430.45 metres, Bhitri and Suahia in the Bhitrigarh range have a height of 324.0 metres and 631.4 metres respectively. Bhainsa Kund in the Kaimur range has an elevation of 621.6 metres. Lakhrampura in the Kanenjua range in the northeast of the district is 542.9 metres high. The general slope of the area in the Sihora and Jabalpur tahsils is from northeast to southwest and in some parts specially in the southwestern areas the elevation declines to 415.10 metres.
Chapter - I

REGIONAL SETTING

DRAINAGE SYSTEM

Centred at the junction of the Vindhyan and the Satpura ranges, region under study virtually lies on the parts of the great central watershed zone of the country. The Kaimur hills act as water divider. The southern half is drained by Narmada and its tributaries the Hiran and Gour while the northern half by Tons and their tributaries belong to the Yamuna system.

The area along the eastern margins of the region is drained by Mahanadi and by tributary of the river son, which flows towards the north. The river having a monsoon type of characteristics with a long dry season. The rivers and nallahs swell and sometimes overflows their banks during the monsoon seasons and are in most of the cases almost remain dry during the summer.

Land erosion is well visible along the river banks. The frequent fluctuations in the water supply and steep banks of the major rivers not only restricts their utilization for irrigation and navigation while the generation of hydroelectricity remains more difficult.

The drainage in the region is generally of the dendric type except in the valleys of the Narmada, along the right bank of the Hiran flows towards the Katangi and the Mahandi Valley along the Shahdol boundary where it has the straight trunks and forms a trellis pattern.

In the north of the region Tons and Son are the important rivers flowing towards the Bay of Bengal through the Gangatic system.
The **Narmada** is the principle river of the region. It rises at Amarkantak (22°40' North Latitude and 81°46' east longitude) in Shahdol district and enters the region through Mandla district from the south of the trijunction of Jabalpur, Mandla and Seoni districts. It pursues a northerly course in the Jabalpur district for about 45 kms across the Satpura and is flowing along the northern edge of the valley through alluvial basin alternating with rocky gorges. Thereafter it turns towards west near its confluence with the Gour, one of its right bank tributaries. Approximately 18 kms from Jabalpur, a 3 kms long gorge below the magnificent marble rocks occurs a beautiful fall of some 15 metres, well known as **Dhuandhar** a stream of mist and is very striking. There after the river passes through the well known gorge of the marble rocks at **Bheraghat**.

The river meanders here in a deep narrow channel amongst the deposits of magnesia limestone with about 100 metres high banks created an extremely picturesque site especially during moonlight. The cliff of the marble rocks at the highest point was measured 40.5 metres from the general water level in December 16,1965. It is a place of scenic beauty and of considerable interest to foreign and domestic tourists. Beyond the marble rocks the river enters a plain and traverses the southern portion of the region and leaves the region at sankal beyond its confluence with the Hiran river. It forms the southwestern boundary between Jabalpur and
Narsinghpur district at some distance. The total length of the river in the region is about 113 Kms.

**Hiran** : The Hiran is the principal right bank tributary of the Narmada in the region. It takes its rise at Kundam (23°19’ North and 80°21’ East) near the southeastern boundary of the region. It takes a northerly course for about 48 Kms through a zigzag course crossing the West-Central Railway line and the Jabalpur-Mirzapur road nearly 3.5 Kms. in the south of Sihora road railway station from Katangi. The Hiran flows in the southwestern direction close to the Bhandar scrap until it joins the Narmada between Sankal and Hirapur. The Belkhand, the Sohar and the Kair nalas join the Hiran from the north, while the Kadri and other nalas join the Hiran from the south. The pariat is its principal affluent. The river is approximately 183 kms long.

**Ken** : The Ken river rises from the northern boundry near the village Mamar but it remains only a stream within the region and crosses to Panna district.

**Gour** : The Gour river rises near the Niwas in Mandla district and forms the interdistrict boundary at some distance. From the village Bilaura it runs towards the north for a short distance and after taking a southwesterly course it crosses the Mandla-Jabalpur road at Guarighat and joins the Narmada from its right bank near the Jabalpur-Gondia Narrow Gauge Railway Bridge, approximately 11 Kms south of the Jabalpur. The total length of the river is about 79 Kms.
SOILS

Soil is among those factors, which determines the nature and the composition of socio-economic activities. In turn not only determines but also ensures the availability of raw materials for various industries.

Jabalpur region has compolitan type of soils and are formed by the decomposition of fragmental quartz, falser and silica which is mixed with alumina, iron, magnesia, lime and the alkalies. And their proportions are being determined by the nature of the parent rocks.

Clay occurs at the lowest level of the soil, and is well known for its moisture retaining capacity and high fertility. While sands occur at the highest level and such soils are fertile only during the seasons of sufficient rainfall. Good wheat producing soils of the region thought contain 40.0-50.0 per cent clay but the proportion of organic matter is less than 60.0 per cent.

Soil of the region considering their physical, chemical and biological properties are divided into ten classes, i.e. Kabar-I, Kabar II, Mud-I, Mud-II, Domatt, Sehra, Patarua, Khatua, Barra and Kachhar. Out of these Kabar and Mud belongs to the most valuable class while potaua, Bhatua and Barra, belong to the inferior classes.

CLIMATE

Climate is one of the important factor affecting various agricultural and industrial activities of the region. The climate has a profound influence directly and indirectly on the development of
manufacturing industry. The climate of the region in general has a monsoon character with seasonal rhythm of temperature and rainfall.

The region enjoys pleasant climatic conditions. Climatic of the region is divided into three distinct seasons. The hot season commences from March until June after which the monsoon season commences and continues till September; while October and November constitute the post monsoon and December to February is the winter season.

**RAINFALL**

Like other parts of the state the region under study also receives most of its rainfall from the precipitation of the Arabian sea during monsoon season. The rainy season commences from the second or third week of June, and account for the maximum number of rainy days and rainfall. However the region receives most of the rainfall during July and August. The average rainfall at various rain gauge stations varies from 1368.0 mm in Jabalpur followed by, 1142.1 mm and 1180.0 mm in Sihora and Patan respectively. This clearly shows a wide variations from one station to the other in the region. Jabalpur receives the maximum rainfall and the proportion of the rainfall gradually decreases towards the north. The maximum rainfall in the region was recorded at Jabalpur (1633 mm) in 1956. By the end of September the rainy days become less frequent and normally rains stop by the middle of October.
Chapter I

REGIONAL SETTING

Table No. 1.2
Jabalpur Region : Average Annual Rainfall
2000

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Tahsil/Region</th>
<th>Rainfall (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sihora</td>
<td>694.4</td>
</tr>
<tr>
<td>2</td>
<td>Patan</td>
<td>920.4</td>
</tr>
<tr>
<td>3</td>
<td>Jabalpur</td>
<td>954.4</td>
</tr>
<tr>
<td>4</td>
<td>Kundam</td>
<td>876.0</td>
</tr>
<tr>
<td></td>
<td>Jabalpur Region</td>
<td>2614.4</td>
</tr>
</tbody>
</table>


TEMPERATURE

Temperature along with the amount of water vapour and rainfall determines the commercial activities and working conditions of the people in the region. The region is well known for its extremes of temperature. The average mean maximum and mean minimum temperature recorded at Jabalpur in the region for last 10 years is tabulated in the table no. 1.3.

The table no. 1.3 clearly shows that January and December appear to be the coldest months of the year and temperature drops to 27°C. The mean maximum and minimum temperature starting from the coldest month of December gradually rises steadily and during the month of May it reaches to the maximum with 42.4°C in the year. On the otherhand highest average mean minimum temperature is recorded during June with 26.8°C. This shows that the days become hot and May and June emerges as the hottest months of the year. After the month of May, the mean maximum temperature gradually starts declining and finally reaches to 27°C in December.
Table No. 1.3
Jabalpur Region: Rhythm of Temperature
2000

<table>
<thead>
<tr>
<th>Months</th>
<th>Temperature (in °C)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Maximum</td>
<td>Mean Minimum</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>26.2</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>30.0</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>34.6</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>39.0</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>42.4</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>38.5</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>30.9</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>29.6</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>31.1</td>
<td>23.3</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>31.6</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>29.4</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>27.0</td>
<td>09.6</td>
<td></td>
</tr>
</tbody>
</table>

Source: District Handbook: Jabalpur, 2001

The lowest mean maximum temperature is recorded during December. Though the lowest mean maximum temperature is recorded during the months of January, the lowest mean minimum temperature is recorded in December. It is interesting to note that mean maximum temperature in July and August remains lowest than September and October. This is probably due to the heavy showers being received during July and August in the region.

A peculiar but well known phenomenon of hot days with cooler nights is a common feature during the month of September and October.
NATURAL VEGETATION

The region has rich natural vegetation and belongs to dry tropical deciduous type and is divided into northern tropical dry deciduous and southern tropical dry mixed deciduous forests. The tropical dry mixed deciduous forests are confined to Sihora tahsils. Saj, Dhaora, Tendu, Lendia, Bija, Mahua and a few other species too are grown in the forest areas of the region. Bamboo is most commonly found in these forests but especially is found on the slopes (Plate No. 1.5).

Under the southern tropical dry deciduous forests teak forest and mixed forests are important. Teak forests are mostly found in Sihora, Jabalpur and Patan tahsils. Teak forests of the region virtually forms the northern limit of the teak areas not only of the region but also of the country. Bamboo is also found partially in all forest ranges of the region. Other trees that are found in the region mainly include Saj, Dhoora, Bija, Haldu, Salai, Gunja, Koha and Tendu. The rest of region has mixed forests and are found almost on every type of ecological formations.