CHAPTER - IX
CONCLUSIONS PROBLEMS AND SUGGESTIONS

9.1 INTRODUCTION

9.2 CONCLUSIONS

9.3 AGRICULTURAL PROBLEMS AND STUDY REGION

9.4 SUGGESTIONS
CHAPTER - IX
CONCLUSION PROBLEMS AND SUGGESTIONS

INTRODUCTION:

The main purpose of this chapter is to sum up the conclusion of the study presented in the previous chapters. Agricultural problem are also discussed in this chapter, some remedies have been suggested to solve the agricultural problems in Beed district.

The first chapter is concerned with the introduction of the problem undertaken for the research work. It deals with the justification of problem and region taken for the analysis purpose. The meaning and significance of the agricultural geography is discussed in detail. The development of agricultural geography in India and Maharashtra has been illustrated. The region under study belongs to Marathwada region, hence, the agricultural role in the economy of Marathwada has also been considered in the first chapter. Important hypotheses and objectives of the study have also been formulated in the first chapter. The data and information are the basic tools for the analysis of the problems existing in the region under study, hence the source of the data have been given. Thus, the data collected from difference source have been calculated into proportions and percentage and put in the various table. The finished data has been represented through various cartographic techniques in choropleth, isopleths and bar diagrams. The maps and tables have been interpreted accordingly to derive certain results. The review of the literature has been also included in this chapter in order to get some idea of previous research to be included in the present study. This chapter is also concerned with the organization of the work. The entire work is devided into nine major chapters. The first chapter is associated with the introduction. The second chapter is concerned with the historical and physical background of the region. Third chapter deals with the non physical
The determinants, while fourth chapter is concerned with the general landuse pattern. The fifth is concerned with the agricultural landuse in Beed district. The sixth chapter is concerned with yield and productivity of agriculture. The seventh chapter is associated with the case study of the selected villages in Beed district. The eighth part is concerned with the factors influencing the productivity of agriculture in Beed district. Hence, a correlation matrix has been prepared of the variables influencing agricultural productivity in Beed district. The last chapter gives certain generalization of the analysis done in all concerned chapters. The second chapter is associated with background of the region under study.

The lowland region is found at the northern part of the district, it is part of the Godavari valley the northern lowland has a general elevation from 550 metres in the west to a little under 400 metres in the east, interspread with a number of residual hills of summits over 600 meters. Gonaba hill, the chitora hill and Naryanagad hilly region in lowland region are not suitable for agricultural activities due to unfavourable physical condition.

Balaghat range passes through Beed dist. Agriculture is not possible over the both side of the Balaghat rage due to rigid topography and steep slope. The entire Ashti tahsil comes in low lying undulating region. Though lower elevation of this regions is interspersed with innumerable low residual hills between the vallays of streams rising from about 600 meters in the south to about 750 meters in the north. The Sina basin is only favourable for the development of agriculture.

Drainage is one of the most important components of physical environment which affects agriculture directly and indirectly. All the streams of the district drain into one of the three principal rivers of the Godavari, the Manjara and the Sina which flow along the northern, southern and the sout-eastern boundaries of the Beed district Godavari river has
changed agricultural structure of north Georai and Manjalgon tahsil. River Lendi, Amrita, Sindphana, Saraswati, Lendi Gunwati and Wan the tributories of Godavari which have played an important role in the agricultural development of the study region of Beed district.

Manjara, Limba, Yelmchi, Babhti, Hol, Rena and Mehekri are also rivers and streams of the study region. They are providing water to the agriculture. Most of the rivers and streams which are flowing through the Beed district Seasonal. Most of the rivers and streams become dry in summer seasons hence they are not useful for irrigation. Even in the rainy and winter seasons some times these streams have no water in beds. The well which comes under the jurisdiction of these streams also becomes dry in summer season. Due to the seasonal nature of the rivers and streams the agriculture sector of is badly affected.

The climate of this district is dry, except, in the south-west monsoon season. May is the hottest month with the mean daily maximum temperature may be as high as 46°C with the advance of south-west monsoon into the dist. By about the second week of June the temperature falls appreciably and weather is pleasant through out the south-west monsoon withdrawn and the day temperature increase slightly and a secondary maximum is reached on 6th October upto 32°C, thereafter, the temperature begin to decrease gradually. Temperature is quite favourable for the growth of various crops in the study region.

The average annual rainfall for the district is 750 mm, the rainfall in the district increase from the west to the east varying form 590mm at Ashti near the eastern border to 685mm, at Ambejogai near the weastern border. About 80% of the annual rainfall is recieved in the south-west monsoon period. The eastern zone comprises Ambajogai, Kaj, parts of Manjalgaon and Beed tahsils which gets more or less assured rainfall. The central zone
comprises western part of Majalgon and east Georai tahsils receive moderate rainfall. The western zone which comprises western part of Georai west part of Beed, Ashti and Patoda tahsils receive irregular and uncertain rain.

The variability of rainfall in the district range between 29.5 percent to 43.27 percent in Ambegogai and Georai tahsils respectively. Below 30 percent rainfall variability was found in Ambegogai tahsil, whereas 30% to 40 percent rainfall variability was recorded in Kaij, Patoda, Ashti, and Manjalgon tahsils during the period of 1970 to 2001. Above 40 percent rainfall variability was found in Beed and Georai tahsils during the period of investigation. It means that there is no guaranty of crops due to high rainfall variability in the study region.

The south-west monsoon during June to September influences the agronomy of the district to a very great extent. It also affects the agricultural operation, cultivable practices and system of crop rotation. The rainfall during the north-east monsoon i.e. October to November though scanty, it is very helpful for the rabi crops and also augments water the wells and tanks. Some showers in the first quarter of the year have also beneficial affects on the growth of rabi crops and summer crops.

Crops growth is determined to a considerable extent by the amount of nutrients in the soils. The main factor that has influenced the development of soils in Beed district is the undulating and hilly topography. The soils of varying are to be found throughout the district. Deep black soils covers about 12.76 percent portion soils covers 65 percent area, coarse and shallow soils covers 22.74 percent portion of the district.

The shallow soils of 7 depths are found in some part of Georai, Kaij and Ashti tahsils. The shallow soils are Muraum mixed soils which are suitable for growing crops like bajara, math, chavali, etc the moderate deep soils are found in hilly and undulating areas of Geori, Naigam (Patoda) and
Ashti tahsils and have varying colours, structure and textures like shallow soils, these soils are also inferior quality due to the lack of nutritious contents in them. These soils of requires all kinds of fertilizes.

Medium deep soil is found in every tahsils particularly on the banks of various streams medium and deep black. Soils are found in Georai, Ambejogai and Manjalgaon tahsils medium and deep black soils are favorable for cotton sugarcane and other crops. The ph. Value of medium soils varies from 8.2 to 8.7 and total soluble salts from 0.2 to 0.3 percent. The contents of calcium carbonate and tose of organic matter vary widely from 3 to 20 percent and from 0.48 to 2.16 percent in the medium black soil in the study region.

Deep black soils are found in the river valleys of Manjara, sina, bendsura, Godavari, Chausala, Rena, Kaj, Amrita, Wan, Saraswati etc. There is heavy concentration of agricultural activities in medium and deep black soils.

The Beed dist. Has limited area under forest dry deciduous forest are found in the entire study region. The area under forest varies from tahsil to tahsil out of the total geographical area below one percent area was recorded under forest in Manjalgaon and Georai tahsils whereas one percent to two percent geographical area was observed under forest in AShti tahsil during 2001 above two percent geographical area was experienced under forest in Beed, Kaj, Ambejogai and Patoda tahsils.

About 15 medium irrigation project are completed in the study region under five year plans. About 28409 hectares irrigation potential has created by these projects in the study region all he medium project provides seasonal water to the limited area. It means that they are unable to provide water to the limited area. It means that they are unable to provide water to agriculture in the summer season.
Out of the total minor irrigation scheme about 20.61% scheme were found in Ashti tahsil in 2000-01, the shares of Kaij, Beed patoda Georai Ambejogai and Manjalgaon were 17.73 percent, 16.52 percent, 16.36 percent, 13.48 percent, 10.91 percent and 4.39 percent respectively. The highest irrigational potentials (20.4 percent) was created in Beed tahsil while the lowest irrigational potentials (7.29 percent) was created in Manjalgaon tahsil by the tanks actually about 2140 hectares of land was brought under irrigation by the minor irrigation schemes in the Beed district. The study region has shown 32.9 percent positive change in percentage of net irrigated area to net sown area the highest change in net irrigated area to net area sown occurred in Manjalgaon during the period of investigation.

The trend of general population growth rate and rural-population growth rate are some Wheat parallel to each other but there are remarkable ups and downs in the urban population growth rate during the span of few decades. The general and rural population growth rates have gradually increased. Crude density of population increased in every tahsil during the period of thirty years (1971-2001) the crude density increased from 117 persons per sq.km. to 172 persons per sq.km. in the study region.

Below 200 physiological density was notice in Georai, Manjalgaon, Kaij and Patoda tahsils, while 200 to 250 persons per sq.km. physiological density was noticed in Ashti and Beed thasil in 2001. Physiological density was increased in every tahsil due to increases in population & net sown area during the period of investigation. Agriculture density increased in every tahsil during the period of thirty years (1971 to 2001) it means that majority of population depends upon agricultural production. Caloric density of population increased from 169 person per sq.km. to 202 persons per sqm.km. in the study region. It decreased in Georai, Ashti and Ambejogai tahsils during the period of investigation.
Per capita land decreased in every tahsil during the period under consideration. Relative co-efficient of over population was increased in every tahsil during the study period. The highest relative co-efficient of over population was found in Ambejogai (0.81) while the lowest relative co-efficient of over population was observed in Georai tahsil. Male literacy is much higher than female in Beed district. Below 30 percent female literacy was found in Georai, Ashti, Patoda and Manjalgaon tahsils whereas above 30 percent female literacy was observed in remaining tahsils.

A high rate of population growth is a matter of concerned as it hampers the welfare of the people, particularly the rural masses and aggravates environmental problem. This calls for whole hearted efforts to spread family limitations practices i.e. a targeted reduction in the birth rate rather than the number of births.

Out of the total workers nearly 79.64 percent workers were engaged in agriculture. It means that agriculture occupation is dominant in every tahsil. Therefore, it is essential to increase agriculture productivity by hook or crook in the study region. Below one percent negative change in cattle population was recorded in Ashri, Georai, Majalgaon and Ambejogai tahsils.

Cattle population decreased in Ashti, Georai, Manjalgon, Ambejogai, Beed and Patoda tahsils due to the attitude of the farmers and adoption of tractors in their farms. Earlier cattle was prestigious point among the farmers but now a days the farmers are feeding minimum bullocks for their farms only cows numbers are more due to dairy development in the study region. Buffaloes population decreased in Georai, Patoda, Ashti, Manjalgon, Ambejogai and Kaj tahsils during the period of investigation.

Region’s climate is favourable for sheep rearing in the study region. The proportion of sheep in the total live stocks was below 1 percent in Georai and Ashti, while 10 percent to 20 percent share of sheep in the total live stocks...
stock was recorded in Manjalgon, Ambejoga, Patoda and Beed tahsils. Positive change in sheep population was experienced in all tahsils of the study region. Rearing of sheep is possible to the poor farmers, hence, its population increased to a greater extent in the rural area. Dry climate follow land, sort grass are also supporting factors for the increased of sheep population in the Beed district. Goat ranks first among the total livestocks in Beed district.

The highest milk cows and buffaloes per 1000 population was recorded in Kaij tahsil whereas the lowest milk units was found in Manjalgaon tahsil during 2000-01. Draught force position is quite better in all tahsils of the study region. About 100 to 151 draught forces per 100 hectares of land was observed in all tahsils of the study region.

The highest density of iron plough per 1000 hectares was found in Ashti, where as the lowest density of iron ploughs per 1000 hectares was recorded in Manjalgaon. Georai tahsil has recorded the highest density of iron ploughs per 1000 hectares while the Kaij tahsil has recorded least iron ploughs. Density of bullock carts showed upward shift in Beed tahsils and other tahsils have shown downward shift in bullock carts density during the period under study. The density of sugarcane crushed per 1000 hectares was 0.14 to 0.39 in all tahsils of study region. It was nil in Ambejogai, Patoda and Ashti tahsils.

Oil engines decreased to the greater extent in the study region during the period of investigation they decreased from 4029 to 2808 between 1971-2001.

Electric pumps sets existed form 2200 to 35323 between 1971 and 2001. It means that electric pump sets increased by 161 times during the period of investigation. The size of land holding labour scarcity, education, age, nonagricultural income, family system and mass media are important
factors that controls farmer's inducement to go for the tractor. The number of tractors increased from 25 to 770 between 1971-2001. Out of the total tractors about 20.91 percent tractors were found in Georai tahsil. Total district utilization of high yielding variety seeds nearly 22.76 percent seeds, were utilized in Manjalgon tahsil in 2000-01 Kaij tahsil stood second in the utilization of improved seeds, while Ashti and Ambejogai utilized 18.51 percent and 16.27 percent improved seeds during 2000-01.

Use of chemical fertilizer increased by 12.81 times viz. 6398 mt. to 81973 M.T during 1970-71 to 2000-01. Total consumption of chemical fertilizers nearly 57.98 percent fertilizers were consumed in Manjalgaon, Ambejogai and Beed ahsil in 2000-01. Use of pesticides also increased in the study region. It increased due to more area under cotton in all tahsils of the Beed district.

Density of market per 100 hector was 0.01 in the Beed district during 2001. The farmers are not getting suitable price to their agricultural goods. Sugar factories are giving about Rs. 1500/- per M.T. to the farmer. This amount is not sufficient as the costs of production are concerned. Therefore, it is essential to fix the price of agricultural products by the govt. of Maharashtra.

The modern cultivation depends on regular and timely supply of seeds, fertilize insecticides etc. therefore, transport facilities are important. During 1971 the road length per one lakh population was 293.51 km. while it is 365.9 kms in 2001, the major lacuna in the road development in study region are also quantitatively poor most of the roads become unfit for transport in rainy seasons. The total length of railways in the region as on 31st March 2001 was 47.86 km. It is essential to increase transport and communication facilities in the study region.
Chapter fourth deals with general land use pattern in Beed district. About 1.08 percent to 1.55 percent positive change in area not available for cultivable land was experienced in Ashti, Manjalgon tahsil. Net sown area was brought under major irrigation project hence, area not available for cultivation has recorded positive change in this tahsil.

The study region has recorded 10.90 percent positive change in net soon area during 1971-2001. Net sown area decreased by 5.84 percent in Manjalgon tahsil.

Per capita land holding decreased on moderate scale in Beed, Georai, Manjalgoan, Ambajogai, Kaji, Patoda and Ashti tahsils during 1971 to 2001. Patoda and Ashtri tahsil were leading in per capita land in 2001. The policy implication of decreasing per capita net sown area is the pressure of population on land is increasing. Way and means have to be found out for productivity of available land for meeting the growing food need of the region. It is possible through adopting new farm technology in the entire study region.

The proportion of potential geographical land (uncultivated land) from 5.83 percent to 4.83 percent is transferred to net sown area during the period of investigation. There is vast scope for extension for cultivated land by bringing fallow and potential agricultural land under net sown area. Therefore, immediate need is to give more emphasis of cropping and increasing the yield from existing cultivated area. Therefore, it is fruitful to investigate the degree of intensity with which the net sown area is utilized.

Below 105 percent landuse efficiency index was found in Ambajogai, Kaji, and Beed tahsils and 105 percent to 120 percent landuse efficiency was recorded in Georai tahsil during 1971-2001. Above 120 percent landuse efficiency index was recorded in Majalgaon, Patoda and Ashti tahsil during 1971-2001. Physical and non physical determinations of agriculture are also
responsible for the variation in landuse efficiency. The area under rice decreased during the period under consideration. The area under wheat decreased during the period of investigation the highest decrease in area under wheat was experienced between 1980-90 whereas the highest increase in the crop was during early eightees.

The area under jowar showed a decrease in 10 years the highest increase in jowar area was in 1970-71 (1.03 lakh hectares) while it decreased to 1.85 lakh hectares in next years due to dry famine in the region. The bajara area decreased during the period of investigation due to variability of rainfall in the study region. The highest decrease in bajara area was experienced in 1970-71.

Area under Tur decreased during the last thirty years. The area under cotton decreased in the period of investigation the highest decrease in cotton area was during 2000-01. Recently area under sugarcane has increased in the study region due to the increase in irrigational facilities and establishment of sugar factories in different parts of the district, variability of rainfall affects on the annual variation of sugarcane in the study region.

Indices of gram tur pulses groundnut other oil seeds cotton, total oil seeds area showed ups and downs during the period of investigation. Indices of sugarcane area showed upward shift. The highest sugarcane area indices was observed during 1971-2001. The physical and non-physical determinants of agriculture are responsible for the change in index number of selected agriculture crops during the period of investigation.

The co-efficient of variability in the areas of cotton other cereals Wheat, Groundnut Gram Other Oil Seeds and tur was 30 percent to 53.07 percent during the period under study other selected crops areas were having 9.28 percent to 30 percent variability between 1970-71 and 2000-01.
The areas of nine out of seventeen selected crops have shown negative compound growth rates during 1970-71 to 2000-01. Crops like rice, wheat, other cereals, grum, munj, other pulses, total pulses, cotton, and groundnut have shown negative compound growth rates in the area during 1970-71 to 2000-01. Variability of rainfall is responsible for the negative change in the above-mentioned crop area.

During the entire time period of thirty years i.e. 1970-71 to 2000-01, the average grass cropped area increased by 1.78 lakh hectares. There were significant increases in area under jowar, bajara, other cereals, tur, groundnut, cotton, condiments, spices, vegetables, and sugarcane. The area under wheat, gram, munj, safflower, other fibres, and fodder crops increased during the period under study.

The emerging conclusion is that the share of jowar area in grass cropped area area ranged between 37.47 percent to 45.05 percent of gross cropped area whereas the relative share of bajara in gross cropped area ranged between 16.21 percent to 17.29 percent during the period of investigation. Irrigation area has increased to a greater extent in the study region hence all tahsils have shown positive change in sugarcane area from 1970-71 to 2000-01.

Changes in the crop combination region resulted from Doi's method were found in Beed, Georai, Kajj, Ambejogai, and Ashti tahsils during the period under study. Two crop combinations to monoculture change was found in Beed and monoculture to two crop combination change was found place in Ashti. Three crop combinations to two crop combination was noticed in Ambejogai and Kaj tahsils while two crop combination to three crop combination change was observed in Georai during 1970-71 to 2000-01.
After the laps of 30 years, Ashti and Georai ahsils have shown to moderate change and Kaij has registered high to zero change during the period of investigation in tahsil like Ashti, Patoda, Kaij and Beed.

Ambejogai tahsil registered high to low change, Majalgaon registered low to high change and Georai showed moderate to high degree change in wheat area concentration during the period of investigation.

Majalgaon tahsil has registered upward shift from low to high degree of concentration under bajara area and Ambejogai showed low to moderate shift. Kaij and Ashti have registered downward shift from moderate to low degree of concentration in area under bajara during the period under consideration.

Tahsils like Patod, Ashti, Kaij, Ambejogai and Georai did not showed any change in tur concentration during 1970-71 to 2000-01 Beed tahsil registered downward shift in tur concentration from moderate to low whereas Majalgaon tahsil showed upward shift from moderate to high degree of tur area concentration during the period of investigation.

Physical and non-physical determinations of agriculture are responsible for the change in level of crop concentration during the period of investigations.

The broad conclusion of the above analysis is that the output of all crops showed increase during 1970-71 to 2000-01 but due to the non-physical factors production of all crops increased during the period under consideration. Production of rice has decreased during the last thirty years.

The production of Jawar, Bajra, Wheat, Cotton, Sugarcane and Pulses fluctuated per unit of area to a certain extent during the period of consideration.

Application of high yielding variety seeds, chemical fertilizers, pesticides, literacy rate, increase in irrigated land, high population pressure,
advanced technology, are the factors which support to the increase in average of yields of selected agricultural crops during the period of investigation. The concept of productivity seem to be a relative terms and can not be uniformly applied every where.

Low level of tur productivity was found in Ambejogai tahsil and moderate tur productivity was recorded in Beed Georai and Kaij tahsils. Whereas high level of tur productivity was found in Ashti, Manjalgaon and Patoda tahsils.

Most of the farmers of the selected villages are poor, hence, they are using bullocks as draught force for agricultural operation. They are unable to purchase tractors on a large scale for agricultural operations. All the selected villages are economically poor to use modern agricultural technology. The dominant crops in selected villages were Jawar, Bajra, Sugarcane and Pulses.

The eight chapter deals, with co-relation matrix of the variables influencing is agriculture in Beed district. An attempt has been made to find out several problems associated with the agriculture production and its future oriented prospects to implements for the improvement for agriculture production. A co-relation matrix has been prepared for different social and economic variables to establish relationship between agricultural productivity and different variables. Various co-efficient of co-relation values with productivity and fertilizer inputs, cultivable land, irrigated area, plough numbers of engines, bullock cart, tractor, roads and rural population have influenced agricultural in Beed district directly or indirectly to some extent.

9.2 AGRICULTURAL PROBLEMS -

In this part, the numbers of problems of agricultural developments have been discussed. Most of these problems are associated to the questions
of agricultural research and training. The following are the problems of agriculture, which are very serious and acute in the Beed district.

1. UNCERTAINTY OF MONSOON RAINFALL -
 Out of the total regions annual rainfall, nearly 85 percent rainfall is received during monsoon period some times region gets more rainfall some time it will provide less rainfall to the region. Rainfall is the dominant single weather element influencing the intensity and location of farming system and the farmer’s choice of the enterprises.

2. OVER CROWDING IN AGRICULTURE -
 The real problem of agricultural regions is that, there are too many people who depend on agriculture. Since 1981, the proportion of people depends on agriculture has remained by and large constant around to percent.

3. PROBLEM OF DISCOURAGING RURAL ATMOSPHERE -
 The farmers of the region are generally speaking, poor, illiterate, ignorant, superstitious and conservative and bound by out mode customs and institutions such as the caste system and the joint family. Except for a small group of enlightened farmers who adopted quickly modern techniques of production, while majority of farmers are not motivated by consideration of economic progress. Besides, they are so poor that they do not have sufficient means to improve their economic conditions. The farmers of the study region are using wooden ploughs and iron ploughs on large scale. The density of tractor per thousand hectare of land is relatively low in Beed district.
4. PROBLEM OF SOIL EROSION -

The problem of soil erosion is a complicated problem. Soil erosion varies from place to place according to the character of the soil, the slope of the ground, the vegetation cover, the use to which the soil is being put and the nature and amount of rainfall.

The very shallow and medium shallow soils have poor water retention capacity poor fertility and vulnerable to severe soil erosion. These soils do not support to the rabbi crops. Such soils are found in Bhima, Sina and Nira basins in Beed district. Due to the soil erosion, the crop productivity is very low.

5. INADEQUATE IRRIGATION FACILITIES -

There are few major projects in the study region. There are some medium and minor schemes in the Beed district. Most of the medium and minor irrigation schemes become dry in the summer season due to shortage of proper rainfall distribution.

6. POOR ECONOMIC CONDITION OF LABOR -

Mostly, 50 percent agricultural labors are having poor economic status. Most of the Agricultural workers belong to the depressed classes who have been neglected for ages. They have been like dumb driven cattle.

Agriculture workers are still illiterate and ignorant in all tahsils in the study region. Another thing is that agricultural worker does not have continuous work in farm. They are getting only 60 to 100 rupees per day from the farmers. Agriculture labors do not get work in the rainy and summer seasons regularly.

7. PROBLEM OF PLANT PROTECTION -

No systematic quantitative studies have been conducted in the study region so far to determine the loses caused by insect, pests and plant diseases.
except in irrigated tract. Most of the farmers of the region are economically poor and they are unable to use pesticides on large scale in the fields.

8. LESS USE OF HYV SEEDS -

Agriculture in the study region, suffers from the application of inadequate and bad seeds. Usually, seeds are kept unprotected for the next sowing season. Thus, the seed is badly affected by the worms and when sown the resulting plants also are badly affected by the worms and when sown the resulting plants turn unhealthy. Some times, the farmers have to open their seed for consumption and for sowing purpose borrow from the local grain merchants or Baniya, which is bad and unhealthy. Therefore, the yield of agricultural crops is very low as compared to western Maharashtra.

9. PROBLEM OF CREDIT FACILITIES AND INDEBTEDNESS-

Credit puts definite limitation on agricultural practices. All agricultural inputs require capital. All the farmers make their decision on the basis of capital, available to them. The farmer borrows loan year after year but he is not in a position to clear off the loans, because his agricultural output is not large enough to pay off his debt. Therefore, the debt of the farmers goes on increasing this is known as indebtedness. The main cause of the indebtedness of the farmer is his poverty. It is well known saying in our country that “the Indian farmer is born in debt, lives in debt and dies in debt.”

10. PROBLEM OF DRAUGHT -

Entire district comes under drought prone area. Some times region gets heavy rainfall and wet farming occurs in the region. Some times dry famine found in the region due to absence of monsoon rain fall. During summer season irrigation, wells become dry. Even there is shortage of drinking water in the various villages during the summer season.
11. LACK OF MARKETING SYSTEM -

Marketing facilities are very poor in the entire study region. There are few regulated agricultural marketing centers, which have very poor facilities. Majority of the small farmers sale their produce in the villages due to the lack of transport and communication facilities high transport cost and very low marketable surplus in scarcity area, the farmers sale their agriculture produce to village Baniya, the big size holder who have comparatively large surplus to sale, their produce in the markets. The following are some of the general constraints observed in study region’s market (i) force sale (ii) Lack of organization (iii) lack of market intelligence (iv) inadequate shortage capacity (v) lack of godwons (vi) absent of grading (vii) superficial middlemen and malpractices and (viii) lack of information regarding prices.

12. LOW PRICE OF AGRICULTURAL COMMODITIES -

Till now, the government has been fixing food grains prices at “Slightly” higher than the average of immediate post harvest prices during the previous few years. The principle of fixing farm prices is indeed wrong, as the immediate post harvest prices are nothing but distress prices and if these are to be fixed for the whole year this would act as disincentive to the farmer who has to invest heavy so as produce more.

13. PROBLEM OF TRAINING CENTERS -

The farmers of the study regions are generally speaking, poor, illiterate, ignorant, superstitious, and conservative bound by out mode customs and institutions such as the caste system and the joint family superstition and belief in fate, are the causes which keep the farmers satisfied with their primitive system of cultivation. There are only few training centers in the region under study. They are unable to give the
training to the entire study region. The farmers are away from the recent agricultural technology.

14. LARGE DIVERSITY OF CROP -

The agriculture of Beed district is predominantly characterized by the cultivation of a wide variety of food and non-food crops. There exist, sharp differences among the region with respect to the methods of cultivation. Due to the differences in soil and climatic conditions different varieties of crops are grown which includes Kharif as well as Rabi cereals.

9.3 SUGGESTIONS -

To solve these problems in the district of Beed, the following points should be tackled by farmers and government intelligently.

1. Untimely and unequal distribution of rainfall.
2. Overcrowding in agriculture should be reduced.
3. Problem of discouraging rural atmosphere by increasing literacy.
5. Inadequate irrigation facilities should be enhanced.
6. Poor economic condition of labor should be improved.
7. Problem of plant protection by using herbicides, pesticides and Insecticides.
8. Use of HYV seeds should be encouraged.
9. Problem of credit facilities and indebtedness should be given concession.
10. Problem of draught should be tackled by harvesting water.
11. Marketing system should be given proper facilities.
12. Prices of agricultural commodities must be revised from time to time.
13. Problem of training centers should be improved.
14. Large diversity of crops should be encouraged.