Chapter 3

An extension of a result of Zaharescu on irreducible polynomials

3.1 Origin of the problem and statements of results

A classical result concerning irreducible polynomials over a valued field K which is complete with respect to a real valuation v says that if $f(x) = x^d + a_1 x^{d-1} + \cdots + a_d$ belonging to $K[x]$ is irreducible, then there exists a positive real number ϵ such that any monic polynomial $g(x) = x^d + b_1 x^{d-1} + \cdots + b_d$ belonging to $K[x]$ with $v(b_j - a_j) > \epsilon$, $1 \leq j \leq d$, is also irreducible over K (see [Art, Chapter 2, Theorem 11]). Examples are known which show that the above result fails to hold when K is not complete (cf. [Zah]). In 2004, Zaharescu [Zah] proved a similar result for valued fields which may not be complete but which are equipped with two valuations that satisfy a certain property which compensates for the lack of completeness of the given valued field. Precisely stated, he proved the following theorem.

Theorem 3.1.A. Let K be a field of characteristic zero equipped with two non-archimedean valuations v_1 and v_2 having value groups Γ_1 and Γ_2 respectively. Let A be a subring of K with field of fractions K which is integrally closed in K and \tilde{A} be the integral closure of A in the algebraic closure \tilde{K} of K. Let \tilde{v}_1 and \tilde{v}_2 be valuations
on \tilde{K} whose restrictions to K coincide with v_1 and v_2 respectively. Assume that for any $\beta \in \tilde{A} \setminus A$ and $\lambda_2 \in \Gamma_2$, there exists an element $\lambda_1 \in \Gamma_1$ such that

$$v_1(u - \beta) \leq \lambda_1 \quad \text{for all } u \in A \text{ with } v_2(u) \geq \lambda_2. \quad (3.1)$$

Let $f(x) = x^d + a_1 x^{d-1} + \cdots + a_d \in A[x]$ be an irreducible polynomial over K. Then given $\lambda_2 \in \Gamma_2$, there exists $\lambda_1 \in \Gamma_1$ such that for any $b_1, b_2, \ldots, b_d \in A$ for which

$$v_1(b_i - a_i) \geq \lambda_1, \quad 1 \leq i \leq d, \quad (3.2)$$

and

$$v_2(b_i) \geq \lambda_2, \quad 1 \leq i \leq d, \quad (3.3)$$

the polynomial $g(x) = x^d + b_1 x^{d-1} + \cdots + b_d$ is irreducible over K.

In this chapter, the above result has been extended to irreducible polynomials with coefficients in arbitrary valued fields without any condition on the characteristic of K. Indeed we prove the following theorem.

Theorem 3.1.1. Let K be a field equipped with two Krull valuations v_1 and v_2 of arbitrary rank. Let $A, \tilde{A}, \tilde{v}_1$ and \tilde{v}_2 be as in Theorem 3.1.A. Assume that for any $\beta \in \tilde{A} \setminus A$ and $\lambda_2 \in \Gamma_2$, there exists an element $\lambda_1 \in \Gamma_1$ such that (3.1) holds. Then for any polynomial $f(x) = x^d + a_1 x^{d-1} + \cdots + a_d \in A[x]$ which is irreducible over K and any $\lambda_2 \in \Gamma_2$, there corresponds $\lambda_1 \in \Gamma_1$ depending upon f and λ_2 such that for any $b_1, b_2, \ldots, b_d \in A$ satisfying (3.2) and (3.3), the polynomial $g(x) = x^d + b_1 x^{d-1} + \cdots + b_d$ is irreducible over K.

As an application of Theorem 3.1.1, we shall deduce the result stated below.

Theorem 3.1.2. Let K_0 be a field complete with respect to a real valuation v_0. Let $f(x, y) = x^d + P_1(y)x^{d-1} + \cdots + P_d(y)$ be an irreducible polynomial in two variables over K_0. Let v_0^g denote the Gaussian extension of v_0 to $K_0(y)$ defined by $v_0^g(\sum_i a_i y^i) = \min\{v_0(a_i) \mid a_i \in K_0\}$. Then given any integer M, there exists $N > 0$ (depending upon f and M) such that whenever $Q_i(y), 1 \leq i \leq d$, are polynomials over K_0 satisfying (i) degree $Q_i(y) \leq M$, (ii) $v_0^g(Q_i(y) - P_i(y)) > N$, then $g(x, y) = \cdots$
\[x^d + Q_1(y)x^{d-1} + \cdots + Q_d(y) \text{ is irreducible over } K_0. \]

An example has been given in Section 3.3 to show that the above theorem is not true in general if the polynomials \(Q_i(y) \) fail to satisfy condition (i) stated above even if each \(Q_i(y) \) is sufficiently close to \(P_i(y) \) with respect to \(v_q \).

3.2 Preliminary results

We need the following theorem of Ershov proved in [Ers]. For ready reference, it is proved here.

Theorem 3.2.B. Let \(v \) be a valuation of arbitrary rank of an algebraically closed field \(K \) with value group \(\Gamma \) and \(v^x \) be the Gaussian extension of \(v \) to \(K(x) \) defined by (1.1). Let \(\epsilon > 0 \) be an element of \(\Gamma \). Let \(f(x), g(x) \) belonging to \(K[x] \) be monic polynomials of degree \(d \) such that \(v^x(f - g) > d\epsilon - (d+1)\epsilon v^x(f) \). If \(f(x) = \prod_{i=1}^{d} (x - \alpha_i) \) is a factorization of \(f(x) \) over \(K \), then we have a factorization \(\prod_{i=1}^{d} (x - \beta_i) \) of \(g(x) \) such that \(v(\alpha_i - \beta_i) > \epsilon \) for \(1 \leq i \leq d \).

We first prove the following lemma needed for the proof of Theorem 3.2.B.

Lemma 3.2.C. Let \(K, v \) and \(\Gamma \) be as in Theorem 3.2.B and \(f(x), g(x) \in K[x] \) be monic polynomials of degree \(d \) such that \(v^x(f - g) > d\epsilon - 2d\epsilon v^x(f) \) for some positive \(\epsilon \) in \(\Gamma \). Then for each root \(\alpha \) of \(f(x) \), there corresponds a root \(\beta \) of \(g(x) \) such that \(v(\alpha - \beta) > \epsilon - v^x(f) \), \(v^x(f_0 - g_0) > \epsilon \), where \(f_0 = f/(x - \alpha) \), \(g_0 = g/(x - \beta) \).

Proof. Write \(f(x) = x^d + a_1x^{d-1} + \cdots + a_d \), \(g(x) = x^d + b_1x^{d-1} + \cdots + b_d \) and denote \(v^x(f) \) by \(-v(c) \), \(c \in K \). As \(f(x) \) is monic, \(v(c) \geq 0 \). Observe that for any root \(\alpha \) of \(f(x) \), \(\alpha c \) is a root of the polynomial \(x^d + a_1x^{d-1} + \cdots + a_d \) having coefficients in the valuation ring of \(v \) and hence \(v(\alpha c) \geq 0 \), which shows that

\[v(\alpha) \geq -v(c) = v^x(f). \]

(3.4)
Let α be a root of $f(x)$. Then it follows from the triangle law that

$$v(g(\alpha)) = v(g(\alpha) - f(\alpha)) \geq \min_{1 \leq i \leq d} \{v(b_i - a_i) + (d - i)v(\alpha)\}. \quad (3.5)$$

In view of the hypothesis $v^x(f - g) > d\epsilon - 2dv^x(f)$ and (3.4), we see that

$$v(b_i - a_i) + (d - i)v(\alpha) > d\epsilon - 2dv^x(f) + (d - i)v^x(f) \geq d\epsilon - dv^x(f).$$

It is clear from the above inequality and (3.5) that $v(g(\alpha)) > d\epsilon - dv^x(f)$, which immediately shows that for at least one root β of $g(x)$

$$v(\alpha - \beta) > \epsilon - v^x(f). \quad (3.6)$$

To estimate $v^x(f_0 - g_0)$, write $f_0 - g_0 = \frac{f}{x - \alpha} - \frac{f}{x - \beta} + \frac{f}{x - \beta} - \frac{g}{x - \beta}$. Clearly

$$v^x\left(\frac{f}{x - \alpha} - \frac{f}{x - \beta}\right) = v^x(f) + v(\alpha - \beta) - v^x((x - \alpha)(x - \beta)) \geq v^x(f) + v(\alpha - \beta),$$

which in view of (3.6) gives

$$v^x\left(\frac{f}{x - \alpha} - \frac{f}{x - \beta}\right) > \epsilon. \quad (3.7)$$

Further by virtue of the hypothesis, we have

$$v^x\left(\frac{f}{x - \beta} - \frac{g}{x - \beta}\right) = v^x(f - g) - v^x(x - \beta) \geq v^x(f - g) > d\epsilon - 2dv^x(f) \geq \epsilon. \quad (3.8)$$

It is immediate from (3.7) and (3.8) that $v^x(f_0 - g_0) > \epsilon$ as desired.

Proof of Theorem 3.2.B. The theorem will be proved by induction on the degree d of $f(x)$. When $d = 1$, $f = x - \alpha$, $g = x - \beta$ and we see that

$$v(\beta_1 - \alpha_1) = v^x(f - g) > \epsilon - 2v^x(f) \geq \epsilon.$$

Consider now the case when $d = 2$. Then by the hypothesis,

$$v^x(f - g) > 2\epsilon - 3v^x(f) = 2(\epsilon - v^x(f)) - 4v^x(f).$$

Applying Lemma 3.2.C (with ϵ replaced by $\epsilon - v^x(f)$), we see that there exists a root β_1 of $g(x)$ satisfying
\[v(\alpha_1 - \beta_1) > (\epsilon - v^e(f)) - v^e(f) = \epsilon - 2v^e(f) \geq \epsilon \]

and
\[v^e(f_0 - g_0) > \epsilon - v^e(f) \geq \epsilon \]

where \(f_0 = f/(x - \alpha_1), \) \(g_0 = g/(x - \beta_1) \). On writing \(f_0 = x - \alpha_2, \) \(g_0 = x - \beta_2 \), the last inequality shows that \(v(\alpha_2 - \beta_2) = v^e(f_0 - g_0) > \epsilon \) proving the theorem in the case \(d = 2 \).

Assume now that \(f(x), g(x) \) have degree \(d \geq 3 \). Then \(dl \geq d(d - 1) \geq 2d \). In view of the hypothesis,
\[v^e(f - g) > dl\epsilon - (d + 1)!v^e(f) = d[(d - 1)!\epsilon - dlv^e(f)] - dlv^e(f) \geq d[(d - 1)!\epsilon - dlv^e(f)] - 2dv^e(f). \]

By Lemma 3.2.C (applied with \(\epsilon \) replaced by \((d - 1)!\epsilon - dlv^e(f) \)) given a root \(\alpha_1 \) of \(f(x) \), there exists a root \(\beta_1 \) of \(g(x) \) such that
\[v(\alpha_1 - \beta_1) > (d - 1)!\epsilon - dlv^e(f) - v^e(f) > \epsilon \]

and
\[v^e(f_0 - g_0) > (d - 1)!\epsilon - dlv^e(f) \geq (d - 1)!\epsilon - dlv^e(f_0), \]

where \(f_0 = f/(x - \alpha_1), \) \(g_0 = g/(x - \beta_1) \). The theorem now follows by the induction hypothesis applied to \(f_0, g_0 \).

Notations. Let \((K, v) \) be as in Theorem 3.2.B. The constant \(dl\epsilon - (d + 1)!v^e(f) \) occurring in this theorem will be denoted by \(\epsilon_f \) and will be referred to as Ershov’s constant with respect to \(v \), associated to a polynomial \(f(x) \in K[x] \), corresponding to \(\epsilon \) belonging to the value group of \(v \). For any polynomial \(f(x) \in K[x] \), we shall denote by \(\omega_f \) the constant defined by
\[\omega_f = \max\{v(\alpha), v(\alpha - \alpha') \mid \alpha \neq \alpha', \alpha, \alpha' \text{ run over the roots of } f(x)\}, \]

which will be referred to as the Generalized Krasner’s constant associated to \(f \) with respect to \(v \). Note that in case \(f(x) \) has a single root \(\alpha \), then \(\omega_f = v(\alpha) \).
3.3 Proof of Theorems 3.1.1 and 3.1.2

Let \(p \geq 1 \) denote the multiplicity of each root of \(f(x) \), \(p \) being the characteristic of \(K \) or 1. Let \(\alpha_1, \alpha_2, \ldots, \alpha_d \) be the roots of \(f(x) \) in \(\bar{K} \) not necessarily distinct. For any non-empty proper subset \(S \) of \(\{1, 2, \ldots, d\} \) having \(r \) elements, we shall denote the elementary symmetric sums by

\[
\sigma_{S,1} = \sum_{j \in S} \alpha_j, \quad \sigma_{S,2} = \sum_{i \in S, i < j} \alpha_i \alpha_j, \ldots, \quad \sigma_{S,r} = \prod_{j \in S} \alpha_j.
\]

Also \(f_S(x) \) will stand for the polynomial \(\prod_{j \in S} (x - \alpha_j) \), i.e.,

\[
f_S(x) = x^r - \sigma_{S,1} x^{r-1} + \cdots + (-1)^r \sigma_{S,r}.
\]

Since \(f(x) \) is irreducible over \(K \) and \(A \) is integrally closed, at least one of the coefficients of \(f_S(x) \) belongs to \(\bar{A} \setminus A \). For any such \(S \), we shall denote by \(j_S \) the smallest positive integer for which \(\sigma_{S,j_S} \) belongs to \(\bar{A} \setminus A \). Set

\[
\delta = \min\{v_1(\alpha_i) \mid 1 \leq i \leq d\} \quad \text{and} \quad \Delta = \max\{v_1(\alpha_i) \mid 1 \leq i \leq d\}.
\]

Define

\[
\delta' = \min\{0, (d-1)\delta\} \quad \text{and} \quad \mu_f = \frac{\delta'}{p^d} + \left(\frac{p^d - d}{p^d} \right) \omega_f,
\]

where \(\omega_f \) is the Generalized Krasner’s constant associated to \(f \) with respect to \(v_1 \). We shall denote by \(\epsilon_f \) the Ershov’s constant associated to \(f(x) \) corresponding to a fixed positive element \(\epsilon \geq \omega_f \) belonging to the value group \(\bar{\Gamma}_1 \) of \(v_1 \). We divide the proof into two steps.

Step I. In this step, we show that with \(\lambda_1 > \epsilon_f \), if \(g(x) = x^d + b_1 x^{d-1} + \cdots + b_d \) belonging to \(A[x] \) is any polynomial satisfying \((3.2) \), then there exists a factorization \(\prod_{i=1}^{d} (x - \theta_i) \) of \(g(x) \) over \(\bar{K} \) such that

\[
\tilde{v}_1(\theta_i - \alpha_i) \geq \frac{\lambda_1}{p^d} + \mu_f \quad \text{for} \quad 1 \leq i \leq d.
\]

(3.9)
Since $\lambda_1 > \epsilon_f$, by Theorem 3.2.B the roots $\theta_1, \theta_2, \ldots, \theta_d$ of $g(x)$ can be arranged so that
\[\hat{v}_1(\theta_i - \alpha_i) > \omega_f \text{ for } 1 \leq i \leq d. \] (3.10)
We are going to prove that (3.10) implies (3.9). Fix one i and denote θ_i, α_i by θ, α respectively. Since $\omega_f \geq \hat{v}_1(\alpha)$, it is immediate from (3.10) and the strong triangle law that $\hat{v}_1(\theta) = \hat{v}_1(\alpha) \geq \delta$. To prove (3.9), consider first the case when $f(x)$ has at least two distinct roots. For any root $\alpha' \neq \alpha$ of $f(x)$, in view of (3.10) and the strong triangle law, it follows that
\[\hat{v}_1(\theta - \alpha') = \min \{ \hat{v}_1(\theta - \alpha), \hat{v}_1(\alpha - \alpha') \} = \hat{v}_1(\alpha - \alpha'). \] (3.11)
Keeping in mind that $v_1(a_j - b_j) \geq \lambda_1$ and $\hat{v}_1(\theta) = \hat{v}_1(\alpha) \geq \delta$, we obtain
\[
\hat{v}_1(f(\theta)) = \hat{v}_1(f(\theta) - g(\theta)) \geq \min_{1 \leq j \leq d} \{ \hat{v}_1(a_j - b_j) + (d - j)\hat{v}_1(\theta) \} \geq \lambda_1 + \min \{ (d - j)\delta \} = \lambda_1 + \delta'.
\]
Therefore on substituting $f(\theta) = \prod_{\alpha' \neq \alpha} (\theta - \alpha')^{p'}$, where α' runs over distinct roots of $f(x)$, the above inequality shows that
\[
\hat{v}_1(f(\theta)) = p'\hat{v}_1(\theta - \alpha) + p'\sum_{\alpha' \neq \alpha} \hat{v}_1(\theta - \alpha') \geq \lambda_1 + \delta'.
\]
Using (3.11), the above inequality can be rewritten as
\[
\hat{v}_1(\theta - \alpha) + \sum_{\alpha' \neq \alpha} \hat{v}_1(\alpha - \alpha') \geq (\lambda_1 + \delta')/p',
\]
which in view of $\hat{v}_1(\alpha - \alpha') \leq \omega_f$ implies that
\[
\hat{v}_1(\theta - \alpha) \geq \frac{\lambda_1 + \delta'}{p'} + \left(\frac{p' - d}{p'} \right) \omega_f = \frac{\lambda_1}{p'} + \mu_f.
\]
This proves (3.9) when $f(x)$ has at least two distinct roots.

Consider now the case when $f(x)$ has a single root α repeated p times. In this situation $\omega_f = \hat{v}_1(\alpha)$. For any root θ of $g(x)$, arguing as in the first case, we see that
\[
\hat{v}_1(f(\theta) - g(\theta)) \geq \min \{ \hat{v}_1(a_j - b_j) + (d - j)\hat{v}_1(\theta) \} \geq \lambda_1 + \delta'.
\]
As $f(\theta) = (\theta - \alpha)^p$, the above inequality gives
\[
\hat{v}_1(\theta - \alpha) \geq \frac{\lambda_1 + \delta'}{p'} = \frac{\lambda_1}{p'} + \mu_f
\]
as desired. This completes the proof of Step I.
Step II. In this step, we prove the irreducibility of \(g(x) \) giving the final choice of \(\lambda_1 \).

Fix an element \(\lambda_2 \) in \(\Gamma_2 \). Define \(\lambda_2' = \min\{\lambda_2/d, \lambda_2\} \). Let \(g(x) = x^d + b_1 x^{d-1} + \cdots + b_d \) belonging to \(A[x] \) be any monic polynomial satisfying (3.2) and (3.3) with \(\lambda_1 > \varepsilon \).

We first show that for each root \(\theta \) of \(g(x) \),

\[
\tilde{v}_2(\theta) \geq \lambda_2'.
\] (3.12)

On writing \(\theta^d = -(b_1 \theta^{d-1} + \cdots + b_d) \) and using the triangle law, we have

\[
d\tilde{v}_2(\theta) \geq \min_{1 \leq j \leq d} \{v_2(b_j) + (d-j)\tilde{v}_2(\theta)\} \geq \lambda_2 + \min_{1 \leq j \leq d} \{(d-j)\tilde{v}_2(\theta)\} = \lambda_2 + (d-i)\tilde{v}_2(\theta) \text{ (say)}
\]

which implies \(\tilde{v}_2(\theta) \geq \lambda_2/i \geq \lambda_2' \) proving (3.12).

Recall that for any non-empty proper subset \(S \) of \(\{1, 2, \ldots, d\} \), the coefficient \(\sigma_{S,j}\bar{s} \) of \(f_S(x) = \prod_{j \in S} (x - \alpha_j) \) belongs to \(\bar{A} \setminus A \). On applying (3.1) with \(\beta \) replaced by \(\sigma_{S,j}\bar{s} \) and \(\lambda_2 \) by \(j_S \lambda_2' \), there exists an element \(\lambda_{1,S} \) belonging to \(\Gamma_1 \) such that

\[
\tilde{v}_1(u - \sigma_{S,j}\bar{s}) \leq \lambda_{1,S}
\] (3.13)

for all \(u \in A \) with \(v_2(u) \geq j_S \lambda_2' \).

Suppose that \(g(x) \) is reducible over \(K \). It will be shown that this will give an upper bound (depending upon \(\lambda_2 \) and \(f(x) \)) on \(\lambda_1 \). Write \(g(x) = G(x)H(x) \), with \(G(x), H(x) \) monic, non-constant polynomials belonging to \(K[x] \cap \bar{A}[x] = A[x] \). Denote \(G(x) \) by \(x^m + c_1 x^{m-1} + \cdots + c_m \). It is immediate from (3.12) that

\[
v_2(c_i) \geq i \lambda_2', \quad 1 \leq i \leq m.
\] (3.14)

Recall that by Step 1, \(\theta_1, \theta_2, \ldots, \theta_d \) is an arrangement of roots of \(g(x) \) satisfying (3.10). Write \(G(x) = \prod_{j \in S} (x - \theta_j) \) where \(S \) is a proper subset of \(\{1, 2, \ldots, d\} \). Consider

\[
f_S(x) = \prod_{j \in S} (x - \alpha_j) \text{. One of the coefficients of } f_S(x) \text{ is } \]

\[
(-1)^{j_S} \sigma_{S,j}\bar{s} = (-1)^{j_S} \sum_{i_1, i_2, \ldots, i_{j_S} \in S} c_{i_1} c_{i_2} \cdots c_{i_{j_S}},
\]
and the corresponding coefficient in $G(x)$, say u_0 is given by:

$$(-1)^{js} u_0 = (-1)^{js} \sum_{i_1, i_2, \ldots, i_{js} \in S} \prod_{i_1 < i_2 < \cdots < i_{js}} \theta_{i_1} \theta_{i_2} \cdots \theta_{i_{js}}.$$

We are going to prove that

$$v_i(u_0 - \sigma_{S, js}) > \frac{\lambda_1}{p^f} + \mu_f - \Delta - \rho_S,$$

where $\Delta = \max_{1 \leq i \leq d} \{v_i(\alpha_i)\}$ and ρ_S is an element of $\tilde{\Gamma}_1$ depending upon f and S, to be specified later. For any subset $\{i_1, i_2, \ldots, i_k\}$ of $\{1, 2, \ldots, d\}$, we can write

$$\theta_{i_1} \theta_{i_2} \cdots \theta_{i_k} - \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} = \theta_{i_1} \cdots \theta_{i_{k-1}} (\theta_{i_k} - \alpha_{i_k}) + \theta_{i_1} \cdots \theta_{i_{k-2}} (\theta_{i_{k-1}} - \alpha_{i_{k-1}}) \alpha_{i_k}$$

$$+ \cdots + (\theta_{i_1} - \alpha_{i_1}) \alpha_{i_2} \cdots \alpha_{i_k}$$ (3.15)

where θ'_{i_k} and α'_{i_k} may not all be distinct. Recall that $v_i(\theta_i) = \tilde{v}_i(\alpha_i)$. Using (3.9), it follows that

$$\tilde{v}_1(\theta_{i_1} \cdots \theta_{i_{k-1}} (\theta_{i_k} - \alpha_{i_k})) = \tilde{v}_1(\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}) + \tilde{v}_1(\theta_{i_k} - \alpha_{i_k})$$

$$\geq \tilde{v}_1(\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}) - \Delta + \frac{\lambda_1}{p^f} + \mu_f.$$

Arguing similarly for other summands on the right hand side of (3.15), we see that

$$\tilde{v}_1(\theta_{i_1} \theta_{i_2} \cdots \theta_{i_k} - \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}) \geq \tilde{v}_1(\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}) - \Delta + \frac{\lambda_1}{p^f} + \mu_f.$$

It immediately follows from the above inequality and the triangle law that

$$\tilde{v}_1(u_0 - \sigma_{S, js}) \geq \frac{\lambda_1}{p^f} + \mu_f - \Delta + \min_{i_1, i_2, \ldots, i_{js} \in S} \{\tilde{v}_1(\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_{js}})\},$$

i.e.,

$$\tilde{v}_1(u_0 - \sigma_{S, js}) \geq \frac{\lambda_1}{p^f} + \mu_f - \Delta + \rho_S,$$ (3.16)

where $\rho_S = \min_{i_1, \ldots, i_{js} \in S} \{\tilde{v}_1(\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_{js}})\}$ is in $\tilde{\Gamma}_1$. Recall that by virtue of (3.14), the coefficient u_0 of x^{m-j} in $G(x)$ satisfies $v_2(u_0) \geq j_2 \lambda'_2$. Therefore it follows from
(3.13) that

\[v_1(u_n - \sigma_{S,jb}) \leq \lambda_{1,S}. \]

(3.17)

The inequalities (3.16) and (3.17) imply that \(\lambda_1 \leq p'(\lambda_{1,S} + \Delta - \mu_f - \rho_S) \).

Thus it follows that if we start with an element \(\lambda_1 \) greater than \(\epsilon_f \) and \(\lambda_1 > p'(\Delta - \mu_f) + p'\max_S\{\lambda_{1,S} - \rho_S\} \) where \(S \) runs over all non-empty proper subsets of \{1, 2, \ldots, d\}, then each polynomial \(g(x) \) satisfying (3.2) and (3.3) must be irreducible over \(K \).

Proof of Theorem 3.1.2. Denote \(K_0(y) \) by \(K \) and the Gaussian valuation \(v^g_0 \) of \(K \) by \(v_1 \). Let \(v_2 \) stand for the valuation of \(K \) defined for any polynomial \(h(y) \) by \(v_2(h(y)) = -\deg h(y) \); here and elsewhere \(\deg \) stands for the degree. Let \(\tilde{v}_1 \) and \(\tilde{v}_2 \) be any prolongations of \(v_1, v_2 \) to the algebraic closure \(\tilde{K} \) of \(K \). Set \(A = K_0[y] \) and denote by \(\tilde{A} \) the integral closure of \(A \) in \(\tilde{K} \).

In view of Theorem 3.1.1, the desired result is proved once we verify that for any \(\beta \in \tilde{A} \setminus A \) and any integer \(\lambda_2 \), there exists an integer \(\lambda_1 \) satisfying (3.1). Suppose to the contrary that (3.1) is not satisfied for some \(\beta \in \tilde{A} \setminus A \) and some integer \(\lambda_2 \). Then there exists a sequence \(\{u_n\} \) in \(A \) such that

\[\tilde{v}_1(u_n - \beta) \geq n, \quad v_2(u_n) \geq \lambda_2 \quad \text{for} \quad n \geq 1. \]

(3.18)

The first inequality above shows that \(\{u_n\} \) will be a Cauchy sequence in \(K \) with respect to \(v_1 \) and the second says that the sequence \(\{\deg u_n\} \) is bounded, say by \(D \).

Write \(u_n = \sum_{i=0}^{D} c_i y^i \). Note that \(\{c_n\}_n \) is a Cauchy sequence with respect to \(v_0 \) and hence converges to an element \(c_i \) of the complete field \(K_0 \). Therefore \(\{u_n\} \) converges to an element \(\sum_{i=0}^{D} c_i y^i \) of \(A \) with respect to \(v_1 \). But the first inequality of (3.18) implies that \(\{u_n\} \) converges to \(\beta \) which does not belong to \(A \). This contradiction shows that the hypothesis of Theorem 3.1.1 is satisfied.

The following example shows that condition (i) of Theorem 3.1.2 cannot be dispensed with.
Example 3.3.1. Let K_0 be a field of characteristic zero which is complete with respect to a non-trivial real valuation v_0. Fix an element α in K_0 satisfying $v_0(\alpha) > 0$ if the characteristic of the residue field of v_0 is zero and $v_0(\alpha) > 2v_0(p)$ if the characteristic of the residue field of v_0 is $p > 0$. Set $f(x, y) = x^2 - (1 + \alpha y)$ and for any $m \geq 1$, define $g_m(x, y) = x^2 - (A_m(y))^2$ where $A_m(y) = 1 + \sum_{k=1}^{m} \left(\frac{1}{k} \right) \alpha^k y^k \in K_0[y]$ and $\left(\frac{1}{k} \right) = \frac{(1/2 - 1 - (1/2 - 1 + k + 1)}{1/2}$. Note that $A_m(y)$ are the partial sums of Taylor series expansion of $\sqrt{1 + \alpha y}$. Hence $(A_m(y))^2 - (1 + \alpha y)$ as a polynomial in y has only terms of degree $> m$. For $k > m$, the coefficient c_k of y^k in $(A_m(y))^2 - (1 + \alpha y)$ is $\sum_{i+j=k, i,j \geq 0} \left(\frac{1}{2i} \right) \left(\frac{1}{2j} \right) \alpha^k$. Keeping in mind the fact that $v_0(\alpha) \leq \frac{1}{p-1}v_0(p)$, it can be easily seen that $v_0(c_k) \geq kv_0(\alpha) - \frac{k}{p-1}v_0(p) - v_0(2^k) \geq k[v_0(\alpha) - 2v_0(p)]$ which tends to infinity as k approaches infinity in view of the choice of α. Hence $(A_m(y))^2$ converges to $(1 + \alpha y)$ with respect to v_0. Therefore the coefficients of $f(x, y)$ and $g_m(x, y)$ are sufficiently close for large m, but each $g_m(x, y)$ is reducible over K_0 while $f(x, y)$ is irreducible.