List of Figures

4.1.1 Variation of normal stress \(\sigma \) at \((x = a/2, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.15)\) subjected to single sine load in cylindrical bending. 64

4.1.2 Variation of transverse shear stress \(\tau \sub{xz} \) at \((x = 0, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.15)\) subjected to single sine load in cylindrical bending. 65

4.1.3 Variation of normal stress \(\sigma \) at \((x = a/2, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.25)\) subjected to single sine load in cylindrical bending. 66

4.1.4 Variation of transverse shear stress \(\tau \sub{xz} \) at \((x = 0, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.25)\) subjected to single sine load in cylindrical bending. 67

4.1.5 Variation of normal stress \(\sigma \) at \((x = a/2, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.35)\) subjected to single sine load in cylindrical bending. 68

4.1.6 Variation of transverse shear stress \(\tau \sub{xz} \) at \((x = 0, z)\) through the thickness of orthotropic plate \((E_x / E_y = 2, h/a = 0.35)\) subjected to single sine load in cylindrical bending. 69

4.1.7 Variation of normal stress \(\sigma \) at \((x = a/2, z)\) through the thickness of orthotropic plate \((E_x / E_y = 25, h/a = 0.15)\) subjected to single sine load in cylindrical bending. 70

4.1.8 Variation of transverse shear stress \(\tau \sub{xz} \) at \((x = 0, z)\) through the thickness of orthotropic plate \((E_x / E_y = 25, h/a = 0.15)\) subjected to single sine load in cylindrical bending. 71

4.1.9 Variation of normal stress \(\sigma \) at \((x = a/2, z)\) through the thickness of orthotropic plate \((E_x / E_y = 25, h/a = 0.25)\) subjected to single sine load in cylindrical bending. 72
4.1.10 Variation of transverse shear stress τ_{xz} at $(x = 0, z)$ through the thickness of orthotropic plate $(E_L/E_T = 25, h/a = 0.25)$ subjected to single sine load in cylindrical bending. ... 73

4.1.11 Variation of normal stress σ_x at $(x = a/2, z)$ through the thickness of orthotropic plate $(E_L/E_T = 25, h/a = 0.35)$ subjected to single sine load in cylindrical bending... 74

4.1.12 Variation of transverse shear stress τ_{xz} at $(x = 0, z)$ through the thickness of orthotropic plate $(E_L/E_T = 2, h/a = 0.35)$ subjected to single sine load in cylindrical bending... 75

4.2.1 Variation of inplane displacement \vec{u} at $(x = a/2, z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10 in cylindrical bending. 81

4.2.2 Variation of normal stress σ_x at $(x = a/2, z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10 in cylindrical bending... 82

4.2.3 Variation transverse shear stress τ_{xz} at $(x = 0, z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10 in cylindrical bending 83

4.2.4 Variation of inplane displacement \vec{u} at $(x = a/2, z)$ through the thickness of a plate subjected to uniformly distributed load with aspect ratio 10 in cylindrical bending. 84

4.2.5 Variation of normal stress σ_x at $(x = a/2, z)$ through the thickness of a plate subjected to uniformly distributed with aspect ratio 10 in cylindrical bending............... 85

4.2.6 Variation of transverse shear stress τ_{xz} at $(x = 0, z)$ through the thickness of a plate subjected to uniformly distributed with aspect ratio 10 in cylindrical bending 86

4.2.7 Variation of normal stress σ_x at $(x = a/2, z)$ through the thickness of a plate subjected to central concentrated line load with aspect ratio 10 in cylindrical bending......... 92

4.2.8 Variation transverse shear stress τ_{xz} at $(x = 0, z)$ through the thickness of a plate subjected to central concentrated line load with aspect ratio 10 in cylindrical bending ... 93
4.3.1 Variation of maximum transverse displacement \bar{w} at $(x = a/2, \ y = b/2, \ z)$ of a square plate subjected to single sine load with aspect ratio (a/h) ... 101

4.3.2 Variation of inplane displacement \bar{u} at $(x = 0, \ y = b/2, \ z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10. .. 102

4.3.3 Variation of normal stress $\bar{\sigma}_x$ at $(x = a/2, \ y = b/2, \ z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10. ... 103

4.3.4 Variation of inplane shear stress $\bar{\tau}_{xy}$ at $(x = 0, \ y = 0, \ z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10. ... 104

4.3.5 Variation of transverse shear stress $\bar{\tau}_{xz}$ at $(x = 0, \ y = b/2, \ z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10. ... 105

4.3.6 Variation of transverse normal stress $\bar{\sigma}_z$ at $(x = a/2, \ y = b/2, \ z)$ through the thickness of a plate subjected to single sine load with aspect ratio 10. ... 106

4.3.7 Variation of inplane displacement \bar{u} at $(x = 0, \ y = b/2, \ z)$ through the thickness of a plate subjected to uniformly distributed load with aspect ratio 10. 107

4.3.8 Variation of normal stress $\bar{\sigma}_x$ at $(x = 0, \ y = b/2, \ z)$ through the thickness of a plate subjected to uniformly distributed load with aspect ratio 10. ... 108

4.3.9 Variation of inplane shear stress $\bar{\tau}_{xy}$ at $(x = 0, \ y = 0, \ z)$ through the thickness of a plate subjected to uniformly distributed load with aspect ratio 10. ... 109

4.3.10 Variation of transverse shear stress $\bar{\tau}_{xz}$ at $(x = 0, \ y = b/2, \ z)$ through the thickness of a plate subjected to uniformly distributed load with aspect ratio 10. ... 110

4.4.1 Variation of fundamental frequency $\bar{\omega}_u$ in flexural mode with aspect ratio S of a simply supported square plate... 118

4.4.2 Variation of frequency of free vibration thickness shear mode $\bar{\omega}_p$ in flexural mode with aspect ratio S of a simply supported square plate... 119

4.4.3 Variation of frequency of free vibration thickness shear mode $\bar{\omega}_p$ in flexural mode with aspect ratio S of a simply supported square plate... 120
4.5.1 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic plate subjected to single sine load for aspect ratio 10. 123

4.5.2 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic plate subjected to single sine load for aspect ratio 10. 124

4.5.3 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic plate subjected to single sine load for aspect ratio 10. 125

4.5.4 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic plate subjected to single sine load for aspect ratio 10. 126

4.5.5 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic plate subjected to single sine load for aspect ratio 10. 127

4.5.6 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic plate subjected to uniformly distributed load for aspect ratio 10. 128

4.5.7 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic plate subjected to uniformly distributed load for aspect ratio 10. 129

4.5.8 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic plate subjected to uniformly distributed load for aspect ratio 10. 130

4.5.9 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic plate subjected to uniformly distributed load for aspect ratio 10. 131

4.5.10 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic plate subjected to uniformly distributed load for aspect ratio 10. 132

4.6.1 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic two layered $(0/90)$ laminate subjected to single sine load for aspect ratio 10. .. 137

4.6.2 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic two layered $(0/90)$ laminate subjected to single sine load for aspect ratio 10. .. 138
4.6.3 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to single sine load for aspect ratio 10. .. 139

4.6.4 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to single sine load for aspect ratio 10. ... 140

4.6.5 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to single sine load for aspect ratio 10. ... 141

4.6.6 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic two layered (0/90) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 142

4.6.7 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to uniformly distributed load for aspect ratio 10. ... 143

4.6.8 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to uniformly distributed load for aspect ratio 10. ... 144

4.6.9 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to uniformly distributed load for aspect ratio 10. ... 145

4.6.10 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic two layered (0/90) laminate subjected to uniformly distributed load for aspect ratio 10. ... 146

4.7.1 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to single sine load for aspect ratio 10. ... 151
4.7.2 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to single sine load for aspect ratio 10. ... 152

4.7.3 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to single sine load for aspect ratio 10. ... 153

4.7.4 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to single sine load for aspect ratio 10. ... 154

4.7.5 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to single sine load for aspect ratio 10. ... 155

4.7.6 Variation of normal stress σ_x at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 156

4.7.7 Variation of normal stress σ_y at $(x = a/2, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 157

4.7.8 Variation of inplane shear stress τ_{xy} at $(x = 0, y = 0, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 158

4.7.9 Variation of transverse shear stress τ_{xz} at $(x = 0, y = b/2, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 159

4.7.10 Variation of transverse shear stress τ_{yz} at $(x = a/2, y = 0, z)$ through the thickness of orthotropic three layered (0/90/0) laminated plate subjected to uniformly distributed load for aspect ratio 10. ... 160