Chapter 4

Processes controlling the surface temperature signature of the Madden-Julian Oscillation in the thermocline ridge of the Indian Ocean

4.1 Introduction

Studies of air-sea interaction in the vicinity of Thermocline Ridge in the southwestern Indian Ocean (TRIO) have been initiated by Xie et al., (2002) with significant climatic influences at timescales from intraseasonal to decadal. During winter, the ridge is shallowest, with a thin mixed layer and high SST. These properties are conductive to strong air-sea interaction, since SST can easily change because of the thin mixed layer and readily available, cold water just below. Furthermore, the TRIO region is located at the western edge of the convergence zone; as a consequence, relatively small changes in SST can induce significant changes in convection [e.g., Xie et al., 2002], with clear remote atmospheric impacts (cyclone distribution, rains over India during the following monsoon, etc.: see Vialard et al., 2009, for a review).

TRIO region is also potentially important for the strongest, intraseasonal mode of atmospheric variability of MJO. It is one of the two regions of the Indo-Pacific with the strongest SST signature associated with the MJO, the other being the northwestern Australian basin [Duvel and Vialard, 2007], and it is very close to the originating region of wintertime MJOs [e.g., Zhang, 2005; Wheeler and Hendon, 2004]. Several studies have suggested that air-sea coupling moderately improves the structure of the simulated MJOs [e.g., Waliser et al., 1999, Inness et al., 2003, Maloney and Sobel, 2004] and the MJO
hindcasts [Woolnough et al., 2007]. Matthews (2004) suggests that ocean-atmospheric interactions may be central to MJO dynamics while Bellenger et al., (2009) shows that the intraseasonal SST variability in this region is likely to increase the large-scale organization of convective perturbations, as well as the reproducibility and the realism of the precipitation pattern. Some of the detailed description of the characteristics of the oceanic intraseasonal events associated with MJO is discussed in Chapter 3.

Before 2000, most studies of MJO-related SST signals had used infrared-based SST measurements, which are susceptible to masking by clouds and so underestimate SST signals [e.g., Sengupta and Ravichandran 2001; Duvel and Vialard 2007]. With the advent of microwave SST products like the Tropical Rainfall Measuring Mission (TRMM) Microwave Image [TMI; Wentz et al., 2000], much larger, intraseasonal SST signals (up 2°C) were identified, particularly in the TRIO region. Some studies emphasized the role of Ekman-pumping and wind driven entrainment in driving these SST signals [Harrison and Vecchi, 2001; Vinayachandran and Saji, 2008], whereas others suggested that surface heat fluxes were the primary cause, for e.g. Duvel et al. (2004), Duvel and Vialard (2007), Vialard et al. (2008). Saji et al. (2006), Han et al. (2007) and Jayakumar and Gnanaseelan (2011) suggested that both of these processes work together to produce the SST response, but did not quantify their respective importance. It is therefore important to understand, in detail, the processes responsible for the strong MJO-related SST signature in the TRIO region.

4.1.1 Influence of internally generated wave

Intraseasonal Rossby wave linked to the internal instabilities can modulate the thermocline in the STIO [Zhou et al., 2008]. This forced response might control the mixed layer depth variation and hence influence SST. Through this internal instability, it can have a considerable contribution to the mixed layer heat budget other than the forcing field. The effect from internally generated oceanic variability is important to quantify in regard to the intraseasonal SST response over TRIO.

4.1.2 Modulation by interannual subsurface variability

Recent studies have shown that the relative importance of oceanic processes and surface heat fluxes over the TRIO region are modulated by interannual variability of the thermocline depth, h, thereby providing a possible explanation to reconcile the aforementioned results. Previous studies [e.g. Masumoto and Meyers, 1998, Xie et al., 2002, Chowdary et al., 2009] had shown that the TRIO region exhibits strong interannual h anomalies, Δh. They are generated by wind-stress curl and wind-stress perturbations [Gnanaseelan and Vaid, 2010] in the eastern part of the Indian Ocean associated with El Niño/La Niña or the IOD events, and propagate into the TRIO region as Rossby waves. Harrison and Vecchi (2001) and Duvel et al., (2004) suggested that in the TRIO region, Δh modu-
lates the temperature of water entrained into the mixed layer and the mixed layer depth, and hence the amplitude of MJO-driven SST events. Resplandy et al., (2009) showed that the chlorophyll response to the MJO was indeed modulated by Δh in both observations and model experiments, suggesting that the response was due to the modulation by Δh of the nutrient-rich water input to the mixed layer. In experiments using a coupled general circulation model, Lloyd and Vecchi (2009) showed that the amplitude of cooling, by oceanic processes in the TRIO region, was interannually modulated, with unusually shallow h resulting in stronger SST events. Finally, Izumo et al., (2010) suggested that the amplitude and timescale of the MJO itself could be modulated by Δh, with negative IODs resulting in more intense and longer timescale perturbations in the TRIO region.

In this chapter, both observations and a suite of sensitivity experiments conducted with an OGCM are examined to investigate the aforementioned issues in detail. Specifically, the following questions are addressed:

- Can we quantify the relative contributions of intraseasonal heat fluxes versus wind stress (Ekman pumping and mixing/entrainment) perturbations in driving the MJO SST response in the TRIO region? Whether internally generated oceanic variability have influence other than this SST response?

- What controls interannual variations of the MJO-driven SST signature in the TRIO region: Δh, or year-to-year changes in the intraseasonal perturbations of surface fluxes, or both?

4.2 Modeling approach towards winter ISO and data

4.2.1 Data and methods

4.2.1.1 Validation data sets

The depths of the mixed layer and the thermocline ridge in the TRIO region are two important parameters in controlling the SST response to the MJO. Hence it is required to validate those fields in the model. For that purpose, the mixed layer depth climatology from de Boyer et al., (2004) and climatological thermal stratification from the World Ocean Atlas 2005 [WOA05, Locarnini et al., 2006] are used.

4.2.1.2 Data sets to estimate MJO surface signals

Several recent satellite datasets are used to describe the surface signature of the MJO in terms of SST, winds and heat fluxes. For SST, optimally interpolated data from the TMI instrument produced by Remote Sensing Systems is used, which has been extensively used to study the intraseasonal SST signature of the MJO, owing to its ability to see through
4.2: Modeling approach towards winter ISO and data

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>Full forcing.</td>
</tr>
<tr>
<td>NO_ISO_FLX</td>
<td>Low-passed filtered shortwave and non-solar heat fluxes</td>
</tr>
<tr>
<td>NO_ISO_SW</td>
<td>Low passed 120 days filter on Short wave flux</td>
</tr>
<tr>
<td>NO_ISO_STRESS</td>
<td>Low passed 120 days filter on wind stress</td>
</tr>
<tr>
<td>NO_INT_STRESS</td>
<td>Climatological wind stress + high passed filtered of 120 days on wind stress (suppresses interannual wind stress variability)</td>
</tr>
</tbody>
</table>

Table 4.1: List of experiments used in this chapter

clouds. For winds, gridded estimates of 10-m winds from the QuikSCAT scatterometer produced at Centre ERS dArchivage et de Traitement [CERSAT, Bentamy et al., 2003] is used. For validation of the model computed intraseasonal wind stress, blend of ERS QuikSCAT scatterometer products is taken from CERSAT. TropFlux data sets [Praveen Kumar et al., 2010] is used for the Flux-SST relation associated with MJO events. Finally, daily data for each product was averaged to a common 1°daily grid.

4.2.2 Modeling approach

4.2.2.1 Control experiment

The model is integrated over the 1958-1995 period using the NCAR-corrected CIAF data sets [Large and Yeager, 2004] from CORE. The CTL experiment is restarted from the MOM4 solution and is run for the 1996-2006 period using the same forcing products. During all the integrations, air-sea fluxes are computed interactively via bulk formulae, using model SST and specified 10-m wind, air-temperature, specific-humidity, and shortwave- and long wave-radiation fields. The model frame work and control run are discussed in detail in Chapter 2.

4.2.2.2 Forcing for sensitivity experiments

A series of sensitivity experiments to evaluate the importance of different physical processes on SST intraseasonal variability in the TRIO region are performed (see Table 4.1). Specifically, the solar (shortwave) and non-solar (sensible+latent+longwave) heat flux components as well as wind stress computed by the model during the CTL are stored and then performed a series of sensitivity experiments with modified versions of these forcing fields. Several of the tests involve filtering to remove intraseasonal variability from the forcing fields. To that end, the various forcing fields are filtered using a 120-day low pass filter. This approach is similar to the one followed by Han et al., (2007) and Saji et al., (2006), who used 105 and 200 days cutoffs, respectively. The simulations and
4.2 Modeling approach towards winter ISO and data

Figure 4.1: Average forcing fields of the CTL (black line) and 120-day low passed sensitivity experiments (blue line) within the TRIO region. The red line on a, b indicates our best guess of actual stresses (from ERS and Qscat scatterometers) and net heat fluxes (from the TropFlux product). a) Zonal wind stress for CTL and NO_ISO_STRESS experiment. b) net heat flux for CTL and NO_ISO_FLUX experiment and c) shortwave heat flux for CTL and ISO_SW experiment. Only the December-March values have been plotted to focus on the period with the strongest SST intraseasonal events. Grey bars separate the different years in this plot.

analyses of this study with 90 day low-passed filtered forcing fields are repeated and similar results were obtained; the primary difference being the extraction of larger amplitude MJO perturbations by the 30-120 day filter.

4.2.2.3 Sensitivity experiments

Table 4.1 gives a list of the sensitivity experiments in this chapter. The NO_ISO_STRESS experiment retains the full spectrum of heat flux forcing, but has low-passed wind stress forcing (Fig. 4.1a) to eliminate the influence of intraseasonal Ekman pumping, mixing at the bottom of the mixed layer and entrainment. The NO_ISO_FLX experiment still has full wind stress forcing, but all the solar and non-solar components of the heat flux forcing are low-passed to eliminate the influence of intraseasonal flux forcing (Figs. 4.1 b
The NO\textsubscript{ISO} SW experiment further attempts to isolate explicitly the effect of shortwave heat-flux variations: it uses full wind stress and non-solar heat-flux forcing, but filters out intraseasonal variations of the net shortwave radiation at the ocean surface (Fig. 4.1 c). An experiment with both wind stress and heat fluxes (shortwave and net) low-passed forcing was also performed and named as NO\textsubscript{ISO}. A final experiment, NO\textsubscript{INT STRESS}, tests the effect of interannual variations of the subsurface thermal structure. Interannual thermocline depth variations in the TRIO region are largely driven by interannual anomalies of Ekman pumping. Therefore, this experiment is forced with the wind stress from CTL except without interannual anomalies, that is, the seasonal climatology of the CTL wind stress plus high-passed wind stress variations from CTL. All sensitivity experiments were run over 1996-2006, from the same initial condition as in the CTL experiment.

Figure 4.2: CTL experiment (a) and de Boyer et al., (2004) observed (b) December-March mixed layer depth climatology (m). CTL experiment (black) and WOA05 [red, Locarnini et al. 2006] December-March climatological temperature profile within the TRIO region (outlined in panels a,b)
4.2.2.4 Estimate of the contribution of various processes

Using the above experiments, our goal is to evaluate the contribution of various processes to the intraseasonal variability of SST:

\[
SST' = SST'_\tau + SST'_Q + SST'_F + SST'_R
\]

where the prime indicates the intraseasonal SST variability obtained by filtering in the time domain. The first two terms on the R.H.S. of Eq. 4.1 are defined by the differences:

- \(SST'_\tau = SST'_{CTL} - SST'_{NO\text{ISO}\text{-STRESS}} \)
- \(SST'_Q = SST'_{CTL} - SST'_{NO\text{ISO}\text{-FLX}} \)

They estimate the contribution of wind-stress and heat-flux forcing to intraseasonal variability respectively. Term \(SST'_F \) defined by \(SST'_F = SST'_{NO\text{ISO}} \), is the residual intraseasonal variability remaining in the NOISO experiment. There is residual variability in the NOISO experiment from three sources: internal oceanic variability in the region [e.g. Zhou et al., 2008]; intraseasonal freshwater forcing present in the NOISO experiment and filtering residual. The last one arises because any filter is perfectly selective and there will be residual variability in the forcing of the sensitivity experiments at periods close to 120 days. To minimize this error, a slightly shorter cutoff period is used for extracting the SST intraseasonal response (30-100 day bandpass filter to calculate the primed quantities in Eq. 4.1) than the one used to low-pass the forcing of the sensitivity experiments (120 days). This approach reduces the part of the intraseasonal variance in \(SST'_F \), but results are quantitatively close even if a 30-120 day bandpass filter is used in Eq. 4.1. Because of non-linearities, there is a remaining intraseasonal SST variability obtained as \(SST'_R = SST' - (SST'_\tau + SST'_Q + SST'_F) \), that is called as ‘error’. Table 4.2 shows that the contributions from \(SST'_F \) and \(SST'_R \) are both weak and weakly correlated to the total SST variability \(SST' \), hence justifying the approach above.

4.2.2.5 Quantification

The precise quantification of the contributions of various processes to the total intraseasonal SST variability is mainly focused in this chapter. Toward that end, regression coefficients of the various contributions in Fig. 4.1 to the total SST intraseasonal variability \(SST' \) are obtained. These coefficients are computed for the entire experiment (Table. 4.2) but also separately for each December-March season (Figures 5a, 9, 10, 11b) in order to quantitatively summarize the contribution of a specific process for each year. By construction, the coefficients for the processes in Eq. 4.1 sum to 1. These coefficients always sum to 100: but can be negative for a process which has a negative correlation to the total variability.
4.2: Modeling approach towards winter ISO and data

4.2.3 Model Validation

In this section, the intraseasonal component of the wind product is used to force the model, as well as the model’s vertical stratification and intraseasonal SST variability in the TRIO region are validated.

4.2.3.1 Intraseasonal forcing

Fig. 4.1 suggests that the model intraseasonal zonal wind stress variability is underestimated compared to the scatterometer data, and that the net heat flux variability is underestimated compared to TropFlux data. The model uses the ISCCP-derived shortwave heat fluxes, which is one of the best estimates of surface shortwave fluxes data available over the Indian Ocean [Praveen Kumar et al., 2010]. Quantitatively, the zonal wind stress variability in the intraseasonal band (30-100 or 30-120 day bandpass-filtered) is underestimated by ~30% over the December-March season, and is in phase with the scatterometer winds (correlation coefficient of ~ 1). This 30% may however be a lower error bound, since the comparison with the insitu data suggest that QuikSCAT overestimates winds over the Indian Ocean [Satheesan et al., 2007]. The non-solar heat flux
(dominated by latent heat flux) intraseasonal variability has roughly the same amplitude as TropFlux data (standard deviation ratio of ~ 1) but with some phase disagreement (correlation coefficient of ~ 0.7).

4.2.3.2 Vertical stratification in the TRIO

The thermal stratification and mixed layer depth (hereafter MLD) are two potentially important factors in controlling the amplitude of the MJO SST signature in the TRIO region [e.g., Harrison and Vecchi, 2001; Duvel et al., 2004]. Fig. 4.2 provides a validation of these two parameters during boreal winter (December to March). The model is able to reproduce the observed minima in MLD, but with some systematic bias. The MLD averaged over the TRIO region is 21 m against 26 m in observations, an underestimation of about 20%. The thermal stratification near the bottom of the mixed layer is a critical parameter for entrainment and Ekman pumping. The model is too warm at all depths but the thermal stratification below the mixed layer (between 20 and 70 m) is quite comparable to the observed climatology [Fig. 4.2c]. Consequences of these biases are explained in Section 4.6.

<table>
<thead>
<tr>
<th>Process</th>
<th>Amplitude of DJFM 30-100 day SST (°C)</th>
<th>Contribution to total variability (no unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All processes(observations)</td>
<td>0.27</td>
<td>-</td>
</tr>
<tr>
<td>All processes(CTL experiment)</td>
<td>0.28</td>
<td>1.00</td>
</tr>
<tr>
<td>Residual (filtering error and internal variability)</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Error (uncertainties in the estimation of each processes due to non-linearities)</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Wind stress</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>Heat Flux</td>
<td>0.22</td>
<td>0.70</td>
</tr>
<tr>
<td>Shortwave Flux</td>
<td>0.21</td>
<td>0.75*</td>
</tr>
</tbody>
</table>

Table 4.2: Estimates of the importance of the various processes in December-March over the TRIO region. The first column gives the standard deviation of 30-100 day filtered SST averaged over the TRIO region in observations, the CTL experiment, and then associated to various processes (see text for details). The second column gives the regression coefficient of the 30-100 day SST variability averaged over the TRIO region associated with each process to total 30-120 day variability in the CTL experiment. For the last line, the regression coefficient is given with respect to the estimate of heat flux-induced intraseasonal SST variability (i.e. the proportion of the heat flux-driven intraseasonal variability which is driven by shortwave flux). Note that by construction, the sum of the contribution of residual, error, wind stress and heat flux regression coefficients is equal to 1 (i.e., those can be seen as estimates of the percentage of variability explained by a certain process).
4.2.3.3 Simulated intraseasonal SST

The solution is able to reproduce a clear maximum of intraseasonal SST variability in the TRIO region (Fig. 4.3) in December-March. It not only reproduces the spatial pattern of variability, but also the amplitude, with the standard deviations of SST averaged over the region being 0.28 °C and 0.27°C for the control experiment and from TMI observations, respectively (see 4.2). It is noted that the model does not simulate the maxima in SST variability west of 55°E and north of 5°S, which are associated with 26-day, mixed Rossby gravity wave variability [e.g., Tsai et al., 1992], but our study is not focused on this region. Average intraseasonal variability within the TRIO region, and shows good agreement with the observed and simulated phase of the intraseasonal SST perturbation, with a correlation coefficient of 0.86 for December-March period. There is a strong cooling event in 1997, but no microwave SST observation to support it. Otherwise, there are 5 clear strong cooling events during the record covered by both the model and observations: two in 1999 [Harrison and Vecchi, 2001, Duvel et al., 2004], one in 2000, one in 2001 and a strongest event in 2002 [Jayakumar and Gnanaseelan, 2011].

Our control experiment thus has a reasonable mean state and it accurately reproduces the intraseasonal SST variability within the TRIO region. It can be used to assess the importance of various processes controlling the intraseasonal SST variability there.

4.3 Observed intraseasonal variability in the thermocline ridge, 1999-2008

In this section, we briefly review the observations of intraseasonal variability from 1999-2008, in order to provide a background for the discussion of modeling results in the coming sections. A simplified equation for the evolution of mixed-layer temperature is given by

\[
\frac{\partial T}{\partial t} = \frac{Q_0}{\rho c_p h} - \frac{F_{-h}}{\rho c_p h} - \frac{u_e}{h} \left(T - T_{-h} \right) - \frac{\partial T}{\partial x} - v \frac{\partial T}{\partial y}
\]

Here, \(h \) is the mixed-layer thickness, \(\rho c_p \) is the volumetric heat capacity of seawater, \(T \) is the average mixed-layer temperature, and \(u \) and \(v \) are the mixed-layer currents. \(Q_0 \) is the net surface heat flux, corrected from the fraction of the solar heat flux that penetrates below the bottom of the mixed layer [Morel and Antoine, 1994]. The terms \(F_{-h} \) and \(T_{-h} \) are respectively the turbulent heat flux and the temperature just below the base of the mixed layer, and \(w_e = \partial h/\partial t + w(-h) \) is the entrainment velocity into the mixed layer. Term (a) describes the effect of atmospheric heat fluxes, (b) is the cooling by subsurface oceanic processes (mixing, entrainment, upwelling), and (c) is the lateral temperature advection. In this study, we estimate the relative contributions of (a) and (b) to intraseasonal SST variations in the TRIO region. Past studies [e.g., Duvel et al., 2004,
Vialard et al., 2008, Vinayachandran and Saji, 2008] and simple scaling analysis have indeed shown that lateral advection was negligible at the scale of the intraseasonal SST perturbations in the TRIO region.

4.3.1 Typical amplitude and phase of perturbations

Figure 4.4: Observed 30-100 day bandpassed a) TMI SST (the blue curve shows the expected response of a slab ocean mixed layer to air-sea flux perturbations in b; the numbers under show the regression coefficient of the blue curve to the black one for each year). The TMI SST is also shown in green in panels b, c and d. b) net surface heat flux, c) QuikSCAT zonal wind stress and d) QuikSCAT Ekman pumping in the TRIO region. Only the December-March values have been plotted to focus on the period with the strongest SST intraseasonal events. e) December-March average observed sea-level interannual anomaly in the TRIO region. Grey bars separate the different years in this plot.

Figure 4.4 illustrates various properties of the observed intraseasonal perturbations over the TRIO region for 1999-2008. During that period, there were 4 large events during 1999, 2001, 2002 and 2008, for which the peak-to-peak amplitude was ~ 1 °C or more. To visualize better the typical amplitude and phase of the atmospheric perturbations related...
to the SST events, Figure 4.5 shows a regression of intraseasonal surface heat flux, wind, and SST to SST intraseasonal variability within the TRIO region. The typical timescale of the perturbations is 50-60 days (Fig. 4.5), although large amplitude events tend to have a longer timescale (Fig. 4.4), in agreement with the results of Saji et al., (2006) and Izumo et al., (2010). Typical peak-to-peak amplitude of the perturbations is

Figure 4.5: Intraseasonal (30-100 day) surface perturbations in the TRIO region regressed to 30-100 day band-passed SST in the TRIO region in December-March: a) zonal (full line) and meridional (dashed line) wind stress; b) Net heat flux (black) and its components and c) SST. The blue curve in c) shows the SST response of a slab ocean mixed layer to the net heat flux perturbation in b).

~ 0.6 °C (SST), 3 ms\(^{-1}\) (wind) and 50 Wm\(^{-2}\) (net heat fluxes). Regression coefficient between each component and the net heat flux perturbation indicate that 68% of the latter is due to the shortwave flux (i.e., to less downward surface solar heat flux during active, cloudy phases of the MJO) and 39% to latent heat flux (i.e., to more evaporation during the active, windy phase of the MJO). The scatterplot of Fig. 4.6e indicates that the amplitude of the shortwave perturbation is generally quite comparable to the one of latent heat flux. The lesser influence of the latent heat flux in Fig. 4.5 is hence due to a more variable phasing of the latent heat flux perturbation with regard to SST (the maximum lagged correlation between SST and latent heat flux is ~ 0.4 against ~ 0.7 for shortwave flux). This difference is explained by the fact that the wind pattern is more
variable than the convection pattern from one winter MJO event to the other [Duvel and Vialard, 2007]. The dominant role of the shortwave perturbation is in agreement with

Figure 4.6: Scatterplot between observed amplitude of SST intraseasonal response each year (computed as the December-March standard-deviation of 30-100 day filtered SST) and a) amplitude of 30-100 day time-integral of the heat flux perturbation, b) amplitude of 30-100 day time integral of the cube of friction velocity (see text for details), c) amplitude of 30-100 day time integral of Ekman pumping and f) December-march average sea level anomaly in the TRIO region. d) scatterplot of 30-100 day cubed friction velocity against heat flux. e) scatterplot of 30-100 day surface shortwave against latent heat flux. The black line in figures 7a and 7f indicate the y=x curve. The correlation and significance value are indicated at the bottom of each scatterplot.

the results from Shinoda and Hendon (1998); but it contradicts the results of Han et al., (2007). The sensible and longwave heat-flux perturbations are weak (~ 5 Wm\(^{-2}\)) and tend to cancel each other (they represent, respectively, 7% and -14% of the total variability). Sensible heat losses are indeed larger during the windy, active MJO phase, but they are compensated by weaker heat losses by infrared radiation, the latter mostly due to the downward component of longwave radiation (i.e., to the greenhouse effect of clouds during the active phase). The regressed Ekman pumping velocity is very weak (~ 0.1 ms\(^{-1}\), not shown). Although there are significant variations of the Ekman pumping velocity associated with the SST events (~ 0.5 ms\(^{-1}\) peak-to-peak, Fig. 4.4), they have
a varying phase relation with the events (see Fig. 4.4d and the 2008 event for example, where Ekman velocity is initially almost out-of-phase with SST and later almost in-phase). Ekman pumping depends quite critically on the wind stress curl, and hence on the wind pattern as well as its intensity. The varying phase of the Ekman pumping relative to the SST is therefore likely explained by the varying wind patterns of wintertime MJOs [Duvel and Vialard, 2007].

Figure 4.7: Standard deviation of December-March 30-100 band-passed SST for the 1999-2006 period: a) Total variability in CTL experiment and contributions from b) total heat flux, c) shortwave heat flux, d) wind stress, e) residual (representing both internal variability and filtering error due to spectral leaks from adjacent frequencies; see text for details) and f) error (mostly due to nonlinearities, see text for details). e) and f) can be combined to represent the overall uncertainty on the estimates of b), c), d).

4.3.2 Air-sea fluxes on the origin of the SST perturbation

To investigate the physical processes (air-sea fluxes or oceanic vertical processes) responsible for SST perturbations, we estimate some terms in Eq. 4.2. If one keeps only the
4.3: Observed intraseasonal variability in the thermocline ridge, 1999-2008

Term (a) in Eq. 4.2, integration and time filtering in the intraseasonal domain result in:

\[T'(t) = \left(\int_0^t \frac{Q_0}{\rho c_p h} d\tau \right)' \]

(4.3)

Since long-term observations of \(h \) are not available within the TRIO region, we simply set \(h = 27.6 \) m, its climatological value for December-March, from de Boyer et al., (2004), thereby representing the mixed layer as a constant thickness slab. The blue curve in Fig. 4.5a plots \(T' \) from Eq. 4.3. Consistent with previous similar analyses [e.g., Duvel et al., 2004, Duvel and Vialard, 2007], there is a good agreement between \(T' \) and observed SST (a correlation of 0.86, Fig. 4.5a), except that the amplitude of the former is underestimated the overall regression coefficient being 0.52 with values varying from 0.32 to 0.78 depending on the time of year. This underestimation can be due either to: a) neglected physical processes such as entrainment; b) variations of the mixed layer depth; or c) errors in the air-sea flux product. As we will see in Section 4.4, neglecting mixed layer depth variations in the model does not degrade significantly the regression coefficient to \(T' \), which suggests that neglecting the mixed layer depth variations (point b above) is not a significant source of error in the observational approach we used here.

Reddening of the spectrum: An important point to note in Fig. 4.5 is that the amplitude of the flux perturbation is not directly proportional to the SST response. Indeed, as indicated in Eq. 4.3, the SST response is proportional to the time integral of the heat flux, and hence is enhanced for longer-lasting forcing events. For example, the 2003 event has net-heat-flux perturbations with a similar amplitude as for the 2001 event, but with a shorter timescale (Fig. 4.4b); as a result, the flux-driven SST perturbations are larger in 2001 than in 2003 (Fig. 4.4a). Similarly, the large-amplitude heat-flux perturbation in March 2005 has a relatively small SST response in comparison to the smaller-amplitude, but longer timescale, flux perturbation in 2001. The timescale of the flux perturbation is therefore an important parameter in controlling the amplitude of the intraseasonal SST response.

4.3.3 Turbulent processes on the origin of the SST perturbation

We cannot easily estimate the terms (b) in Eq. 4.1, because of the lack of subsurface data. The vertical speed at the bottom of the mixed layer is indeed difficult to evaluate, except for the Ekman pumping component \(w_{Ek} = \text{curl}(\tau/(\rho f)) \), and hence is the turbulent heat flux at the bottom of the mixed layer \(F_{-h} \). We can, however, investigate whether the amplitude of the intraseasonal SST signal and simplified diagnostics of the oceanic response are related. Foltz et al., (2010) have shown, for example, that there is a good agreement between the cube of friction velocity, \(u^* = (\tau/\rho)^{1/2} \), and the turbulent flux at the bottom of the mixed layer (mixing and entrainment) in the region at the seasonal
4.3: Observed intraseasonal variability in the thermocline ridge, 1999-2008

4.3.4 Ekman pumping on the origin of the SST perturbation

Nevertheless, observations can help us to resolve the potential influence of Ekman pumping at the intraseasonal timescale. As mentioned earlier, there is no systematic phase relation between Ekman pumping velocity and SST perturbations, indicating that Ekman pumping probably does not play a systematic role in the intraseasonal SST perturbations in the TRIO region. The scatterplot of Fig. 4.6c confirms that there is no relation between intraseasonal Ekman pumping and the amplitude of the SST perturbation. On the basis of observations, we can therefore exclude a systematic impact of Ekman pumping on intraseasonal SST variability.

4.3.5 Influence of interannual variability

The largest sea-level anomalies during December-March over the period are found in 1999 (strong negative anomaly), 2003, 2005 (mild positive anomalies), 1998 and 2007 (strong positive anomaly). All of these years are associated with either IOD and/or El Niño/La Niña events (1998 is both a La Niña and negative IOD, 2002 and 2004 are both El Niño years, and 2006 is a moderate El Niño and a positive IOD year). Several studies have hypothesized that shallow thermocline (i.e. negative SLA) anomalies favour larger SST intraseasonal perturbations. There is indeed a tendency for smaller SST intraseasonal perturbations when the thermocline is deeper (Fig. 4.6f; correlation of -0.45 marginally significant at the 83% level), although there are also considerable variations in SST amplitude that depend on the local atmospheric forcing.

In this section, we have shown that there is generally a good agreement between observed SST anomalies and those obtained by integrating intraseasonal net heat fluxes. We also noted that longer-lasting heat-flux perturbations induce a larger SST response. Observations show that Ekman pumping does not play a systematic role in the intrasea-
sonal SST perturbations. The role of turbulent processes (mixing and entrainment) may still be significant, but it is difficult to separate their effects from those due to heat flux because the two forcings are correlated. Finally, it is also difficult to establish a potential control of intraseasonal SST variability by the interannual variability in the thermal structure based on observations only. In the next two sections, we use specifically designed numerical experiments to address these issues.

4.4 Processes controlling the SST signature of the MJO

In this section, we report sensitivity experiments to our OGCM that are designed to evaluate the relative importance of atmospheric heat fluxes (term \((a)\) in Eq. (4.2)) and oceanic processes (term \((b)\) in Eq. (4.2)) in driving intraseasonal SST variability in the TRIO region. We also investigate the relative influence of solar and non-solar flux (mostly latent heat flux (Fig. 4.5) on intraseasonal SST.

4.4.1 Overall influence of fluxes / oceanic processes

Fig. 4.7 shows estimates of the amplitude of December-March intraseasonal SST variability caused by various processes, following the methodology introduced in previous Section, but not its phase relative to the total variability, that is, whether it contributes positively or negatively to the SST variability in the region. The figure is hence complemented by Table 4.2, which lists linear regression coefficients in the TRIO region between the variability associated with each process and the average SST intraseasonal variability. These coefficients thus estimate the contribution of each processes to the total variability. The largest contribution is from heat fluxes, accounting for 70% of the total variability (Table 4.2). Although wind stresses can locally have a large contribution (Fig. 4.7d), its average contribution is only 19% of the total variability, that is, 3-4 times smaller than the contribution from net heat flux. The residual and error terms are systematically smaller than all of the other terms for all the years, suggesting that the approach described in model section is valid. The two terms contribute about 11% of the total variability. Thus, 11% is the error bar on the estimation of the relative importance of each process; however, Fig. 4.8b shows that the sum of the heat-flux and wind-stress contributions are a very good estimate of the total SST variability for each year.

4.4.2 Year to year variations of fluxes/oceanic processes

The overall influence of intraseasonal wind stress is hence 3-4 times smaller than that of heat fluxes. Fig. 4.8a illustrates the year-to-year variations in the relative influence of the two processes. The phase agreement with the total SST variability is generally
Figure 4.8: a) 30-100 day band-passed SST for CTL (black), wind stress contribution (blue) and heat flux contribution (red). b) 30-100 day band-passed SST for CTL (black) and sum of heat flux and wind stress contributions (blue). c) 30-100 day band-passed SST for CTL (black) and expected response from a slab ocean mixed layer (blue). In a) and c), the number indicated below each year are the regression coefficients of the 30-100 day SST in each experiment to the CTL experiment (i.e. the contribution of each process to total SST variability for each year). Only the December-March values have been plotted to focus on the period with the strongest SST intraseasonal events. Grey bars separate the different years in this plot.

much better for the flux than for the wind stress contribution. Although heat-flux forcing generally dominates the SST intraseasonal variability, there are a few specific years where fluxes and oceanic processes have roughly comparable influence (2000, 2001 and 2006). Among the cooling events covered in both model and observations, wind-stress driven signature dominate and significantly contributes to the event occurrence in 2000 and 2001 respectively. Although wind-stress on average only contributes to $\sim 20\%$ of the total SST MJO signature in the TRIO region, hence it can occasionally be the dominant process for a specific event.
4.4.3 Slab mixed-layer approach

In the previous section, we have used a so-called slab mixed-layer approach (i.e., a climatological mixed layer depth) to evaluate the contribution of heat fluxes to observed SST variability. The modeling approach that we use allows us to estimate the limitations of this approach: we have computed the flux contribution using the same approach as for the observations in Fig. 4.8c. As shown from Fig. 4.8c, neglecting intraseasonal and interannual mixed-layer variations does not degrade strongly the estimate of SST intraseasonal variability, while the regression coefficient of the heat-flux contribution to the total variability is 0.7, the one computed from the slab mixed layer approach is 0.66. Hence the mixed layer depth variability is not an important parameter for a precise estimation of the SST intraseasonal variability. This is probably because the shallow thermocline in the TRIO region prevents large variability of the mixed layer depth, as suggested in Duvel et al., (2004).

Figure 4.9: 30-100 day band-passed SST for total heat flux contribution (red) and ISO shortwave contribution (blue). The numbers indicated below each year are the regression coefficients of the 30-100 day shortwave contribution to the total heat flux contribution experiment (i.e. fraction of heat flux induced SST variability due to shortwave for each year). Only the December-March values have been plotted to focus on the period with the strongest SST intraseasonal events. Grey bars separate the different years in this plot.

4.4.4 Influence of shortwave and latent heat fluxes

We saw in the previous section that the observed, intraseasonal heat-flux perturbations in the TRIO region are 68% due to shortwave radiation. Because of the shortwave penetration below the mixed layer, however, it is not obvious how this division impacts SST. In our model, SST intraseasonal variability forced by the shortwave flux is 75% of that forced by the total heat flux (Table 2). The relative roles of the latent and shortwave heat
fluxes display some interannual variations (Fig. 4.9) with shortwave heat-flux contribution ranging from 59 to 94%. In most cases, then, the shortwave heat-flux perturbation is the main factor in influencing the intraseasonal SST variability in our experiments, in contrast to the results of Han et al., (2007). We will return to this point in the discussion section.

In this section, we have shown that atmospheric intraseasonal heat fluxes are the dominant forcing of intraseasonal SST variations during 1997-2006, with a contribution four times larger than that of wind stress. Although the effect of wind stress can be important locally within the TRIO region, and its average impact over the entire region is equal to that of heat flux only for the 2000 event. In the model, the heat-flux forcing is largely due to perturbations of shortwave radiation over 1997-2006 (75%), roughly consistent with the estimates from an independent heat flux product (68%).

Figure 4.10: Observed sea level anomaly (red) and CTL-CLIM_TAU sea level in the TRIO region (black). The December-march average values are indicated by dots. b) CTL (black) and CLIM_TAU (red) 30-100 day band-passed SST in the TRIO region. The numbers indicated below each year are the regression coefficients of the 30-100 day SST in NO_INT_STRESS to the CTL experiment (i.e. an estimate of the impact of subsurface interannual variability on the SST response to the MJO). In b), only the December-March values have been plotted to focus on the period with the strongest SST intraseasonal events and grey bars separate the different years.
4.5 Control by interannual variability of the thermocline

In this section, we investigate whether interannual anomalies of thermocline depth influence the amplitude of the intraseasonal SST signature, as suggested by Harrison and Vecchi (2001), Duvel et al., (2004), and Resplandy et al., (2009). Specifically, we discuss experiment NO\textsubscript{INT_STRESS} and its difference from CTL. Experiment NO\textsubscript{INT_STRESS} retains the same heat-flux forcing as CTL but the wind-stress forcing is by climatological plus high-pass-filtered winds from CTL, that is, the forcing excludes interannual variations of the wind stress. Fig. 4.10a compares sea level in CTL minus NO\textsubscript{INT_STRESS}, which, to the extent that the response is linear, extracts the response to interannual wind stress forcing, against observed sea level interannual anomalies (SLA). There is generally a good match with observed SLA, showing that our strategy to remove interannual subsurface variability in NO\textsubscript{INT_STRESS} is successful. The two curves indeed match quite well during the large positive SLAs after the 1997 and 2006 El Niño/IOD events, and during the large negative anomaly that follows the 1998 La Niña/negative IOD event, although the negative anomaly is underestimated by about one third in January 1998-March 1999. The model also well reproduces the mild positive sea level anomalies in 2003 and 2005, which follow moderate El Niño events in the Pacific in 2002-2003 and 2004-2005. On the other hand, the model produces a large negative sea-level anomaly in 2001, whereas almost neutral conditions prevail in the observations.

4.5.1 Interannual modulation

The amplitude of the intraseasonal SST perturbations is modulated by sea level anomalies, as demonstrated in Figure 4.10b, with regression coefficients between NO\textsubscript{INT_STRESS} and CTL varying from 0.47 (2001) to 1.27 (1998). If we exclude the year 2001 (for which the sea-level response to interannual wind stress is too large, as discussed above), the regression coefficient varies between 0.70 and 1.27 (i.e., an amplitude modulation of up to 30%). The modulation is such that negative sea-level anomalies favour a larger intraseasonal SST response in 1997, 1999-2002, and 2006 and vice versa in 1998 and 2003-2005, consistent with previous studies.

4.5.2 Processes of interannual modulation

There are two possible processes that might explain the modulation of the intraseasonal SST response by interannual variations of the subsurface thermal structure. First, as suggested by Duvel et al., (2002), the thermocline is so shallow in the TRIO region that it likely exerts a strong control on mixed-layer thickness: A thinner (thicker) mixed layer has a smaller (larger) heat capacity and is hence more swiftly (slowly) cooled or heated by anomalies of either air-sea fluxes or subsurface processes (the terms proportional to $1/h$...
Second, as suggested by Harrison and Vecchi (2001), a shallow thermocline brings cooler water to the base of the mixed layer (i.e. a lower T-h in 4.1) and strengthens the impact of vertical mixing (term b in Eq. (4.2)). To investigate these two possibilities, Figs. 4.11 a and b provide, respectively, scatterplots of i) MLD against SLA in the TRIO region in the CTL experiment, and ii) MLD in the CTL experiment against MLD in the NO_INT_STRES experiment. Fig. 4.11a suggests that there is indeed a weak control of the MLD by SLA, with a correlation of 0.62 and regression coefficient of 0.23 m/cm. On the other hand, Fig. 4.11b shows that there is a strong coherent relation between the MLDs in CTL and NO_INT_STRESS, which suggests that the correlation in Fig. 4.11a might be coincidental. The figure suggests that interannual MLD variability in the TRIO region is probably controlled by other factors (e.g., local interannual changes in
atmospheric momentum and buoyancy fluxes), which also happen to be correlated with the heat content change. The modulation of the MLD by interannual variations of the subsurface thermal structure is hence not responsible for the varying intraseasonal SST response in the TRIO region.

4.5.3 Temperature jump across the base of the mixed layer

We estimate the temperature jump at the bottom of the mixed layer as the mean mixed-layer temperature minus the temperature 10 m below the mixed layer; as in Foltz et al., (2010). There is a strong and very coherent relation between this temperature jump and sea-level anomalies in the TRIO region (Fig. 4.11c, correlation of -0.99). If we exclude 2001 (because of the bias in model SLA during that year), the temperature jump at the bottom of the mixed layer varies by a factor of 3 between years with a deep thermocline ($\Delta T \approx 0.3^\circ C$ in 1998) and years with a shallow thermocline ($\Delta T \approx 1^\circ C$ in 1999). Despite this strong modulation of T, the control of intraseasonal SST amplitude by the oceanic stratification is relatively weak (about 20%). This apparent contradiction is explained by the relatively weak role ($\sim 20\%$) of the upwelling and entrainment against atmospheric heat fluxes in the overall intraseasonal SST perturbation, as demonstrated in Section 4.4.

The results in this section suggest that interannual subsurface thermal variability associated with IOD/ENSO events did modulate the SST signature of the MJO in the TRIO region by up to 30% over the 1997-2006 period. Changes in the temperature vertically advected and/or entrained into the mixed layer seem to be the main process responsible for this interannual modulation. This modulation is quite weak with respect to the large-amplitude variation of the SST response, suggesting the conclusions that year-to-year differences in the properties of the MJO-induced, surface heat-flux perturbation is the main factor that controls the intraseasonal SST response in the TRIO region.

4.6 Summary and Discussion

In this Chapter, we have used observations and sensitivity experiments using an OGCM (MOM4) to explore the mechanisms controlling intraseasonal SST variability in the TRIO region ($5^\circ S$-$10^\circ S$, $60^\circ E$-$90^\circ E$), and its year-to-year variations over the 1997-2006 period. During 1997-2006, the contribution of surface heat fluxes to intraseasonal SST variability averaged over the TRIO region in the model is 70%, against 20% due to wind-stress-induced entrainment and vertical advection. The heat-flux-induced intraseasonal SST variability is dominated by shortwave variations (75%), with other components of the heat flux playing a more modest role (25%). Estimates from an independent heat flux product suggest a similar contribution of other flux components (32%). The time scale of the heat-flux perturbation, in addition to its amplitude, is also important in controlling the intraseasonal SST signature, with longer periods favoring a larger response.
There are also strong year-to-year variations in the relative importance of heat-flux and wind-stress forcing, with the contribution of intraseasonal wind stress becoming equivalent or larger than that due to heat fluxes during 2000, 2001 and 2006. Interannual variations of the subsurface thermal structure associated with IOD/ENSO events modulate the MJO-driven SST signature by up to 30%, mainly by changing the temperature of water entrained into the mixed layer. The main factor that controls year-to-year changes in amplitude of the SST response is hence the amplitude and time-scale of the surface heat flux perturbation.

4.6.1 Model biases

As noted in Section 4.2, the model has some biases that might affect our results. First, its climatological mixed layer is somewhat too thin in the TRIO region during boreal winter (21 m instead of 26 m). As seen from Eq.(4.2), this bias could tend to increase the amplitude of the SST perturbation, but should affect both the heat- flux forcing (term \(a\)) and the entrainment, upwelling and mixing (term \(b\)) in a similar way. Therefore, it probably does not significantly affect our estimate of the respective influence of these two processes.

An important factor in controlling the amplitude of subsurface oceanic processes (entrainment, upwelling, mixing) is the temperature stratification below the mixed layer. Fig. 4.2 suggests that, although the model stratification is too diffuse at depth, it is quite reasonable just below the mixed layer. On the other hand, comparisons with observations (Section 4.2c) suggest that the model forcing underestimates intraseasonal variability of the wind stress by \(\sim 30\%\), which could result in an underestimation of the model response by the same amount, to the extent that the ocean response is linear. Additionally, we showed that there is a \(\sim 10\%\) error in our estimate of the contribution of heat fluxes / wind stress contribution to intraseasonal SST variability. Even if we add these two, our estimate of the contribution of heat flux variability is large enough \((70\%)\) to remain the dominant process in controlling TRIO intraseasonal SST variability over the whole period. We should point out, however, that vertical oceanic processes are not negligible on average, and can even dominate the heat budget on particular years \((e.g., 2001)\), or locally at various locations within the TRIO region.

Last but not the least, our model has a 1° horizontal resolution and hence does not resolve eddy variability outside of the equatorial band. This is probably the reason why SST intraseasonal variability is underestimated at several locations (Fig. 4.3). We are, however, mostly concerned with large scale processes, in this chapter. The SST perturbations associated with the MJO are comparable to the size of the TRIO box we are using, which is \(\sim 3300 \text{ km} \times 550 \text{ km}\) \([e.g., Harrison and Vecchi, 2001; Duvel et al., 2004]\). The Rossby radius in this region varies between 100 and 200 km \([Chelton et al., 1998]\). The region we consider hence has 15 to 25 times the typical size of eddies in this region. Whereas the model undoubtedly underestimates eddy fluxes at small scales,
a large portion of these eddy fluxes is unstructured in space and should average to zero at the scale of the MJO oceanic signature itself. We therefore feel that the model resolution should not affect strongly our quantitative estimates of processes contributing to the SST signature of the MJO other than through its impact on the mean state of the model.

4.6.2 Comparison between model / observational results

Our model-derived estimate of the influence of heat fluxes on intraseasonal SST perturbations in the TRIO region is 70%, while our observational estimate based on the TropFlux product is only 52%. We saw in section 4.4 that the slab mixed layer approach that we used to obtain our observational estimate was probably not a major source of error (about 4-5%). The correlation between the intraseasonal SST and time-integrated intraseasonal heat flux is excellent (0.86) and Praveen Kumar et al., (2010) report of 15-20% underestimation of TropFlux (and OAFlux) daily heat fluxes against the more precise estimates obtained from the RAMA moorings. We therefore suggest that the lower contribution of fluxes in our observational estimate originates from underestimation of net heat flux intraseasonal variability by Tropflux.

4.6.3 Comparison with other studies

Most previous studies did not quantify precisely the relative role of heat fluxes and wind-stress driven entrainment and mixing, but rather provided qualitative assessments of their importance. The case study of Harrison and Vecchi (1999) for the January 1999 cooling event suggested that vertical oceanic processes dominated the cooling, whereas Duvel et al., (2004) concluded that heat fluxes were the dominant factor for the same event. This does not allow drawing a conclusion: observations suggest a 30% contribution of heat fluxes (Fig. 4.5a), while the model suggests a 70% contribution for that event (Fig. 4.9a). Vinayachandran and Saji (2008) suggested that vertical oceanic processes dominated the response in 2000 and air-sea fluxes in 2002, in agreement with the present study (Fig. 4.9a). For the late 2007-early 2008 event, Vialard et al. (2008) from in situ observations report that surface heat flux was the main contributor. The results from the TropFlux product suggest a smaller influence of heat fluxes (48%; Fig. 4.5a), but this difference is probably due to the underestimated heat flux perturbation in the TropFlux product. The intraseasonal heat flux perturbation is indeed \(\sim 120 \text{ Wm}^{-2} \) peak-to-peak in Fig. 4.5b, against \(> 200 \text{ Wm}^{-2} \) for the 2006-2007 event studied in Vialard et al., 2008, consistent with the underestimation of heat-flux variability by TropFlux.

The Saji et al., (2006) study covers a longer period than the cases studied above (1998-2005) but only provides a qualitative estimate, and concludes that reduced solar radiation, enhanced evaporation and possibly strong entrainment over the thermocline ridge all play a role in the SST cooling. Duvel and Vialard (2007) cover a similar period and mostly underline the role of air-sea fluxes, but again qualitatively. Han et al., (2007) made a very comprehensive study of the processes of intraseasonal SST variability in
boreal winter in the Indian Ocean, including quantitative estimates. Their results are difficult to compare with ours, however, because they use a different partition in terms of processes (their evaluation of the wind effect includes wind-driven latent heat flux variations, and the wind rather than wind stress - is also used in the mixed layer scheme in their model). In one aspect, their conclusions differ markedly from ours. In their simulations, the shortwave radiation has no influence on intraseasonal SST variations in the TRIO region. This result is really quite surprising, given the large-amplitude, surface-heat-flux perturbations due to shortwave radiation that are observed in the Indian Ocean (e.g., Section 4.3, Shinoda and Hendon, 1998, Vialard et al., 2008). We, therefore, believe that our result giving a significant importance (about 50-60% of the total SST variability) to the shortwave-radiation perturbation is in better agreement with previous studies.

The only study that provides a quantitative estimate comparable to ours is Lloyd and Vecchi (2010). Although they focus on shorter timescale cooling events (; 30 days), they find a 75% contribution of fluxes for SST events between 1.5 and 2.5 standard deviation, and 55% for events above 2.5 standard deviation. Our estimate is consistent with theirs for moderate events. For the two events above 2.5 standard deviation in our time series (1997 and 2002), however, we find a dominant role of air-sea fluxes (Fig. 4.9a). We agree with Resplandy et al. (2009) and Lloyd and Vecchi (2010) in that subsurface stratification modulates the relative importance of air-sea fluxes and vertical oceanic processes (with a shallow thermocline favoring a stronger role of the latter), which may explain part of the disagreement amongst past case studies. Our quantitative estimate over the 1997-2006 period however suggests that the impact of this modulation on intraseasonal SST amplitude is rather weak (∼30%) and that the amplitude and phasing of the heat flux perturbation is the main factor that controls the amplitude of its SST signature. In that respect, it is useful to note that Izumo et al. (2010) proposed that interannual variability of the atmospheric background state over the Indian Ocean modulates the properties (latitude and timescale) of the MJO over the Indian Ocean. If this idea is correct, there might indeed be a control of the amplitude of the MJO signature in the TRIO region by interannual variability in the Indian Ocean, but through changes in the surface heat flux perturbation properties rather than changes in the subsurface ocean thermal state.

We feel that with a consensus on the processes controlling the MJO SST signature drawing near, it is now possible to focus on its potential feedback onto the atmosphere. There have been a wide range of studies showing a moderate impact of coupling on the MJO [e.g. Waliser et al., 1999, Inness et al., 2003, Maloney and Sobel 2004], but none of them reproduced the relatively large amplitude SST signature of the MJO in the TRIO region and North-Western Australian Basin (e.g., Duvel and Vialard, 2007). The potential feedback of the SST signature on the MJO itself hence needs to be re-examined with models that reproduce better the large SST perturbations in these regions.