4 \textbf{z}-Classes in \textit{p}-Groups

Let \(G \) be a group such that \([G: Z(G)]\) is a prime power, say \(p^k \). By Proposition 2.7.4, the group \(G \) is isoclinic to a finite \(p \)-group. Since, isoclinic groups have the same number of \(z \)-classes, we can assume that group \(G \) is a finite \(p \)-group, while studying \(z \)-classes in \(G \) such that \([G: Z(G)]\) is a power of prime \(p \).

In this chapter, we study \(z \)-classes in finite \(p \)-groups. As mentioned above, the results obtained in this chapter are valid for groups with center of prime power index. We obtain better upper and lower bounds on the number of \(z \)-classes. We give a characterization of finite \(p \)-groups attaining the lower bound. We also obtain necessary conditions on \(p \)-groups attaining upper bounds.

4.1 Bounds on the Number of \textit{z}-Classes

\textbf{Proposition 4.1.1} (Upper Bound 2). Let \(G \) be a finite \(p \)-group. If \([G: Z(G)] = p^k \) \((k \geq 2)\), then \(G \) has at most \(\frac{p^k - 1}{p - 1} + 1 \) \(z \)-classes.

\textit{Proof}. The number of \(z \)-classes in \(G \) is at most the number of rational conjugacy classes of \(G/Z(G) \) (by Proposition 3.3.3). Since \(|G/Z(G)| = p^k\), the rational conjugacy class of any non-trivial element \(xZ(G) \) in \(G/Z(G) \) contains at least \(p - 1 \) elements

\[xZ(G), x^2Z(G), \ldots, x^{p-1}Z(G). \]

Thus, \(G/Z(G) \) has at most \(\frac{p^k - 1}{p - 1} + 1 \) rational conjugacy classes, and the result follows. \(\square \)
Example 4.1.2. Consider the extra-special p-group

$$G = \langle x_1, \cdots, x_r, y_1, \cdots, y_r, t : \ x_i^p = y_i^p = 1, \ t = [x_i, y_i], \ * \rangle \ (r \geq 1),$$

where $*$ denotes that the other commutators of the generators are trivial. Then G has exactly $\frac{p^{2r-1} - 1}{p-1} + 1$ z-classes, and it is equal to the number of irreducible rational representations of $G/Z(G)$ (see Theorem 5.3.1).

Proposition 4.1.3 (Lower Bound 2). If G is a non-abelian finite p-group, then G has at least $p + 2$ z-classes.

Proof. By hypothesis, $Z(G) < G$. Also, $Z(G)$ is the z-class of $1 \in G$. Let

$$\{1 = x_0, \ x_1, \ x_2, \ \cdots, \ x_l\}$$

be a set of representatives of the z-classes of G. We show that $l > p$. For $1 \leq i \leq l$, since $x_i \notin Z(G)$, hence $Z(G) < Z_G(x_i) < G$. Therefore, there is a maximal subgroup H_i containing $Z(G)$ such that $Z_G(x_i) \leq H_i$. Since $H_i \leq G$, by Proposition 3.2.2,

$$\text{z-class of } x_i = R(x_i) \subseteq \bigcup_{g \in G} gZ_G(x_i)g^{-1} \subseteq H_i.$$

Then $G = Z(G) \cup (\bigcup_{i=1}^l R(x_i)) \subseteq \bigcup_{i=1}^l H_i$. If $l \leq p$ and $|G| = p^n$, then

$$p^n - 1 = |G \setminus \{1\}| \leq \Sigma_{i=1}^l |H_i \setminus \{1\}| \leq p(p^{n-1} - 1),$$

a contradiction, hence $l > p$.

Example 4.1.4. For $n \geq 2$, consider the group

$$G = \langle x, y : x^{p^n} = y^p = 1, y^{-1}xy = x^{1+p^{n-1}} \rangle = \langle x_1, \cdots, x_n, y : y^p = x_1^p = 1, x_{i+1}^p = x_1, \cdots, x_n^p = x_{n+1}, [y, x_n] = x_1 \rangle.$$

Now, $Z(G) = \langle x^p \rangle$ and $G/Z(G) = \langle \overline{x}, \overline{y} \rangle \cong C_p \times C_p$. Hence G has $p + 1$ maximal subgroups containing $Z(G)$, say $H_1, H_2, \cdots, H_{p+1}$. For each i, since $H_i/Z(G) \cong C_p$, H_i is abelian. By Theorem 3.2.5, $H_i \setminus Z(G)$ is a z-class, and these together with $Z(G)$ are the $p + 2$ z-classes of G.

41
4.2 Groups Attaining Bounds

For a group G with $[G: Z(G)] < \infty$, by Corollary 3.3.7, the number of z-classes in G is at most the number of rational irreducible representations of $G/Z(G)$. The following theorem gives a necessary condition on p-groups which attain this upper bound. Recall that $x, y \in G$ are said to be rationally conjugate if $\langle x \rangle$ and $\langle y \rangle$ are conjugate.

Theorem 4.2.1 (cf. [28]). Let G be a non-abelian finite p-group. Suppose that the number of z-classes in G is equal to the number of rational irreducible representations of $G/Z(G)$. Then either $G/Z(G) \cong C_p \times C_p$ or G has no abelian subgroup of index p.

Proof. Assume that $G/Z(G) \not\cong C_p \times C_p$. By Proposition 3.3.3, if $xZ(G), yZ(G)$ are rationally conjugate in $G/Z(G)$, then $x \sim_z y$. By hypothesis

$(\ast) \quad x \sim_z y \implies xZ(G)$ and $yZ(G)$ are rationally conjugate.

If possible, let A be an abelian subgroup of index p. Then, $Z(G) < A < G$. Also, since $G/Z(G) \not\cong C_p \times C_p$ (equivalently $[G: Z(G)] \neq p^2$) and G is non-abelian, we have

$$[A: Z(G)] \geq p^2.$$

Case 1. $G/Z(G)$ is abelian:

(i) If $A/Z(G)$ is cyclic (which has order $\geq p^2$), let $aZ(G)$ be a generator of $A/Z(G)$. Then $Z_G(a) = Z_G(a^p) = A$, hence $a \sim_z a^p$; but $aZ(G)$ and $a^pZ(G)$ are not rationally conjugate in $G/Z(G)$, since they have different orders, a contradiction to (\ast).

(ii) If $A/Z(G)$ is non-cyclic, there exist $a, b \in A \setminus Z(G)$, such that $\langle aZ(G) \rangle \neq \langle bZ(G) \rangle$. Then $Z_G(a) = Z_G(b) = A$, hence $a \sim_z b$; but $aZ(G)$ and $bZ(G)$ are not rationally conjugate in $G/Z(G)$, a contradiction to (\ast).

Case 2. $G/Z(G)$ is non-abelian:

Then $Z(G) < Z_2(G)$. Since $A/Z(G)$ is an abelian subgroup of index p in $G/Z(G)$,

$$Z_2(G)/Z(G) = Z(G/Z(G)) < A/Z(G),$$

hence $Z_2(G) < A$.

42
For any \(a \in A \setminus Z_2(G) \) and \(b \in Z_2(G) \setminus Z(G) \), \(Z_G(a) = A = Z_G(b) \), hence \(a, b \) are \(z \)-equivalent in \(G \), but \(aZ(G), bZ(G) \) are not rationally conjugate, since only \(bZ(G) \) is central, a contradiction to (*)).

By Proposition 4.1.1, if \([G: Z(G)] = p^k\), then \(G \) has at most \(\frac{p^k - 1}{p - 1} + 1 \) \(z \)-classes.

Theorem 4.2.2. Let \(G \) be a non-abelian finite \(p \)-group with \([G: Z(G)] = p^k\). If the number of \(z \)-classes in \(G \) is \(\frac{p^k - 1}{p - 1} + 1 \) then either \(G/Z(G) \cong C_p \times C_p \) or the following holds:

1. \(G \) has no abelian subgroup of index \(p \).
2. \(G/Z(G) \) is elementary abelian. Equivalently, \(G \) is isoclinic to a special \(p \)-group.

Proof. Suppose that \(G/Z(G) \not\cong C_p \times C_p \). We prove (1) and (2). By hypothesis and surjectivity of \(h \) in Proposition 3.3.3,

\[
\frac{p^k - 1}{p - 1} + 1 = \text{the number of } z \text{-classes in } G \\
\leq \text{the number of rational conjugacy classes in } G/Z(G) \quad (**) \\
\leq \frac{p^k - 1}{p - 1} + 1. \quad (***)
\]

Thus the inequalities (***) are indeed equalities. Now, by equality in (**), \(G \) has no abelian subgroup of index \(p \) (Theorem 4.2.1), which proves (1). Since \(|G/Z(G)| = p^k \), the equality in (***) holds only if \(G/Z(G) \) is elementary abelian. By Theorem 2.7.3, there is a group \(G_1 \) isoclinic to \(G \) such that \(Z(G_1) \subseteq [G_1, G_1] \). Since \(G_1/Z(G_1) \cong G/Z(G) \) is (elementary) abelian, it follows that \(Z(G_1) = [G_1, G_1] \). By Proposition 2.2.1, it is easy to prove that \([G_1, G_1] \) is also elementary abelian. Thus \(G_1 \) is a special \(p \)-group.

By Proposition 4.1.3, a non-abelian finite \(p \)-group has at least \(p + 2 \) \(z \)-classes. We give a necessary and sufficient condition on a finite \(p \)-group \(G \), which has exactly \(p + 2 \) \(z \)-classes.

Theorem 4.2.3. Let \(G \) be a non-abelian finite \(p \)-group. Then \(G \) has exactly \(p + 2 \) \(z \)-classes if and only if either \(G/Z(G) \cong C_p \times C_p \) or the following holds:
A z-Classes in p-Groups

(1) G has a unique abelian subgroup of index p.

(2) The center of $G/Z(G)$ has order p.

Proof. Suppose that G has exactly $p + 2$ z-classes. Then we can assume that

\[(*) \quad [G: Z(G)] \geq p^3,\]

and we prove (1) and (2). Let \{1, $x_1, x_2, \ldots, x_{p+1}\}$ be a set of representatives of the z-classes of G. As in the proof of Proposition 4.1.3, we choose maximal subgroups H_i of G containing $Z(G)$ such that $R(x_i) \subseteq H_i \ (1 \leq i \leq p + 1)$. Then \(R(1) = Z(G) \subseteq H_i\), and

\[G = R(1) \cup (\cup_{i=1}^{p+1} R(x_i)) \subseteq \cup_{i=1}^{p+1} H_i.\]

By Theorem 2.4.5, every H_i is maximal subgroup and \([G: \cap_{i=1}^{p+1} H_i] = p^2.\)

Claim 1. H_i is abelian for some i

Let $L = \cap_{i=1}^{p+1} H_i$. Then \((H_i \setminus L) \cap (H_j \setminus L) = \phi \text{ for } i \neq j.\) For every i, consider $x'_i \in H_i \setminus L$. Then, x'_i is z-equivalent to x_j for some j, hence $x'_i \in R(x_j) \subseteq H_j$. If $j \neq i$, then $x'_i \in H_j \cap H_i = L$, a contradiction. Hence, $x'_i \in R(x_i)$. Thus \(\{1, x'_1, x'_2, \ldots, x'_{p+1}\}\) is a set of representatives of the z-classes of G, such that $x'_i \notin L$. Thus, without loss of generality, we can assume that the representatives x_1, \ldots, x_{p+1} are not in L. This also shows that, all the elements of $H_i \setminus L$ are z-equivalent to x_i:

\[H_i \setminus L \subseteq R(x_i) \quad (1 \leq i \leq p + 1).\]

Let A be a maximal abelian normal subgroup of G. Then \(Z(G) \subseteq A\) (otherwise, $AZ(G)$ will be an abelian normal subgroup, properly containing A). If $Z(G) = A$, then, consider a normal subgroup of order p in $G/Z(G)$, say $A_1/Z(G)$ (such a subgroup exists since $G/Z(G)$ is a p-group). Since $A_1/Z(G)$ is cyclic, A_1 is an abelian normal subgroup of G with $A < A_1$, a contradiction to the choice of A. Thus,

\[Z(G) < A\]

Consider $a \in A \setminus Z(G)$. By Theorem 3.2.4, $R(a) \subseteq A \setminus Z(G)$. Since $a \notin Z(G)$, we have $a \sim_z x_i$ for some $i \ (1 \leq i \leq p + 1)$. Therefore, \(H_i \setminus L \subseteq R(x_i) = R(a) \subseteq A \setminus Z(G) \subseteq A.\)
A z-Classes in p-Groups

Then $|A| > |H_i \setminus L| = p^{n-1} - p^{n-2} \geq p^{n-2}$. It follows that A is an abelian subgroup of index p, and its uniqueness follows by Theorem 2.4.2, proving (1). Further, since $a \in R(x_i) \cap A$, and all elements of $A \setminus Z(G)$ are z-equivalent to a, we have

$$A \setminus Z(G) \subseteq R(a) = R(x_i) \subseteq H_i.$$

Since $Z(G) \subseteq H_i$, we have $A \subseteq H_i$. Hence $A = H_i$, and H_i is abelian.

Without loss of generality, let $H_1 = A$, which is abelian. By Theorem 3.2.5, $A \setminus Z(G)$ is a z-class, and we have two partitions of G:

$$G = Z(G) \cup (A \setminus Z(G)) \cup R(x_2) \cup \cdots \cup R(x_{p+1}),$$

$$G = Z(G) \cup (A \setminus Z(G)) \cup (H_2 \setminus L) \cup \cdots \cup (H_{p+1} \setminus L).$$

Since $H_i \setminus L \subseteq R(x_i)$ ($2 \leq i \leq p + 1$), it follows that $R(x_i) = H_i \setminus L$.

Claim 2: $G/Z(G)$ is non-abelian.

Suppose that $G/Z(G)$ is abelian. Then all the subgroups of G containing $Z(G)$ are normal. In particular, $Z_G(x_i) \leq G$ for $1 \leq i \leq p + 1$. By hypothesis, there are exactly $p + 1$ z-classes other than $Z(G)$. In other words, there are exactly $p + 1$ conjugacy classes of proper centralizers. Hence $\{Z_G(x_i)\}_{1 \leq i \leq p+1}$ are the only proper centralizers in G. Therefore, $G = \bigcup_{i=1}^{p+1} Z_G(x_i)$. By Theorem 2.4.5,

$$[G: Z(G)] = [G: \bigcap_{i=1}^{p+1} Z_G(x_i)] = p^2,$$

a contradiction to the assumption (\ast).

Claim 3. $[N_G(Z_G(x_i)): Z_G(x_i)] = p$ for $2 \leq i \leq p + 1$.

Fix i, with $2 \leq i \leq p + 1$. Let $[G: Z(G)] = p^k$. By Claim 2, $k \geq 3$. Since $x_i \notin A$, by Theorem 2.3.5(i) and (ii), $[Z_G(x_i): Z(G)] = p$ and

$$Z_G(x_i) = Z(G) \cup x_i Z(G) \cup \cdots \cup x_i^{p-1} Z(G).$$

It is easy to see that

$$F'_{x_i} = \{ g \in G: Z_G(g) = Z_G(x_i) \} = Z_G(x_i) \setminus Z(G).$$
If \(Z_G(x_i) \leq G \), then \(Z_G(x_i)/Z(G) \) will be a normal subgroup of order \(p \), it must be central and since \(A/Z(G) \) is an abelian subgroup of index \(p \) in the non-abelian group \(G/Z(G) \), we have \(Z_G(x_i)/Z(G) \leq A/Z(G) \), and hence \(x_i \in A \), a contradiction. Since \(G \) is a \(p \)-group, \(Z_G(x_i) < N_G(Z_G(x_i)) \), and

\[
[G: N_G(Z_G(x_i))] < [G: Z_G(x_i)] = p^{k-1}.
\]

Since \([G: N_G(Z_G(x_i))]\) is the number of distinct conjugates of \(Z_G(x_i) \) in \(G \), if \(Z_G(x_i) \) has \(p^{k_i} \) conjugates in \(G \), then \(p^{k_i} < p^{k-1} \), i.e. \(p^{k_i} \leq p^{k-2} \), and

\[
p^{n-1} - p^{n-2} = |H_i \setminus L| = |R(x_i)| = [G: N_G(Z_G(x_i))] |F'_x| \\
\leq p^{k-2} (p - 1) |Z(G)| = p^{k-2} (p - 1) p^{n-k} = p^{n-1} - p^{n-2}
\]

Thus \(k_i = k - 2 \) and \([G: N_G(Z_G(x_i))] = p^{k-2} \). Since

\[
[G: Z(G)] = p^k \quad \text{and} \quad [Z_G(x_i): Z(G)] = p
\]

we have \([G: Z_G(x_i)] = p^{k-1} \) and the claim follows.

By Theorem 2.3.5(iii),

\[
Z(G/Z(G)) = N_G(Z_G(x_i))/Z_G(x_i) \cong C_p.
\]

This proves (2).

Conversely, if \(G/Z(G) \cong C_p \times C_p \), then \(G \) has \(p + 2 \) \(z \)-classes (as illustrated in the Example 4.1.4). Therefore, suppose that \([G: Z(G)] \geq p^3 \), and (1) and (2) holds. Let \(A \) be the abelian subgroup of index \(p \) in \(G \). By Theorem 3.2.5, \(A \setminus Z(G) \) is a \(z \)-class. Let \(x \in G \setminus A \) be arbitrary. By Theorem 2.3.5(i), \([Z_G(x): Z(G)] = p\), and

\[
N_G(Z_G(x))/Z_G(x) = Z(G/Z(G)) \cong C_p.
\]

Hence \([N_G(Z_G(x)): Z(G)] = p^2 \) and \([G: N_G(Z_G(x_i))] = p^{k-2} \). In other words, \(Z_G(x) \) has \(p^{k-2} \) conjugates in \(G \). Since \([Z_G(x): Z(G)] = p\),

\[
F'_x = Z_G(x) \setminus Z(G) = xZ(G) \cup x^2Z(G) \cup \cdots x^{p-1}Z(G).
\]
Thus,
\[|R(x)| = |G: N_G(Z_G(x))|, |F'_x| = p^{k-2}(p-1)|Z(G)| = p^{n-1} - p^{n-2}. \]

If \(G \setminus A \) is union of \(m \) \(z \)-classes, then
\[p^n - p^{n-1} = |G \setminus A| = m(p^{n-1} - p^{n-2}), \]
hence \(m = p \). Since \(A \) is union of two \(z \)-classes, \(G \) has exactly \(p + 2 \) \(z \)-classes.

\[\square \]

Alternate Proof: In the proof of the necessary part of Theorem 4.2.3, the existence of abelian subgroup of index \(p \) can be shown in the following way also:

Let \(A \) be a maximal abelian normal subgroup of \(G \). Clearly, \(Z(G) \subseteq A \). If \(Z(G) = A \), then, in \(G/Z(G) \), consider a normal subgroup of order \(p \), say \(A_1/Z(G) \). Then \(A_1 \) is an abelian normal subgroup of \(G \) with \(Z(G) = A < A_1 \), contradicting the choice of \(A \).

Thus, for any maximal abelian normal subgroup \(A \) of \(G \), \(Z(G) < A \). Note that, by hypothesis, \(G \) is non-abelian, hence \(Z(G) < A < G \).

By Theorem 3.2.4, \(A \) is a union of \(z \)-classes. Consider \(x_1 \in A \setminus Z(G) \). Let \(\{1, x_1, \cdots, x_{p+1}\} \) be a set of representatives of the \(z \)-classes of \(G \). As in the proof of Proposition 4.1.3, we can choose maximal subgroups \(H_2, \cdots, H_{p+1} \) containing \(Z(G) \) such that the \(z \)-class of \(x_i \) is contained in \(H_i \), \(2 \leq i \leq p + 1 \). Then, it follows that
\[G = A \cup H_2 \cup \cdots \cup H_{p+1}. \]

By Theorem 2.4.5, \(A \) (and \(H_i \)'s) must be maximal, which proves the existence of abelian subgroup of index \(p \).

Reformulation of Theorem 4.2.3:

We give a reformulation of the Theorem 4.2.3. Let \(G \) be a non-abelian finite \(p \)-group, such that \(G \) has an abelian subgroup \(A \) of index \(p \), and \(|Z(G)| = p \). By Theorem 2.2.2, \([G: \gamma_2(G)] = p^2\), and
\[Z(G) \leq \gamma_2(G) \leq A. \]

If \(Z(G) = \gamma_2(G) \), then \(G \) will be a non-abelian group of order \(p^3 \), hence will be of maximal class. If \(Z(G) < \gamma_2(G) \), then \(\gamma_2(G/Z(G)) = \gamma_2(G)/Z(G) \), and its index in \(G/Z(G) \) will be \(p^2 \). By Theorem 2.2.2, \(G/Z(G) \) has center of order \(p \), i.e. \(Z_2(G)/Z(G) \cong C_p \).

47
Continuing this way, we see that the upper central series of G has maximum length, hence G is of maximal class. Then, Theorem 4.2.3 can be reformulated as:

Theorem 4.2.4. Let G be a non-abelian finite p-group. Then G has exactly $p + 2$ z-classes if and only if either $G/Z(G) \cong C_p \times C_p$ or the following holds:

1. G has a unique abelian subgroup of index p.
2. $G/Z(G)$ is of maximal class.

Remarks 4.2.5. (i) In any non-abelian group G of order p^3, we have $G/Z(G) \cong C_p \times C_p$, hence G has exactly $p + 2$ z-classes.

(ii) It is interesting to note that any non-abelian group G of order p^4 has exactly $p + 2$ z-classes: G always has an abelian subgroup of index p (see Theorem 2.4.1), and $[G: Z(G)] \in \{p^2, p^3\}$. If $[G: Z(G)] = p^2$, then G has $p + 2$ z-classes (by Theorem 4.2.3).

If $[G: Z(G)] = p^3$, i.e. $|Z(G)| = p$, then $|G'| = p^2$ (by Theorem 2.2.2). Therefore $Z(G) < G'$ and $G/Z(G)$ is non-abelian group of order p^3; its center has order p. By Theorem 4.2.3, G has $p + 2$ z-classes.

Example 4.2.6. The simplest examples of groups with $p + 2$ z-classes will be groups G with $G/Z(G) \cong C_p \times C_p$. Such a well known group is

$$G_n = C_{p^n} \rtimes C_p = \langle x, y : x^{p^n} = y^p = 1, y^{-1}xy = x^{1+p^{n-1}} \rangle, \quad n \geq 2.$$

Here $|G_n| = p^{n+1}$. We give an infinite family of p-groups in which $[G: Z(G)]$ takes every possible value, and G has $p + 2$ z-classes (cf. Fernandez-Alcober [1], Ex. 3.4, p. 202).

Let H be the abelian group defined by the generators $\{s_i : i \geq 1\}$ subject to the relations

$$s_i^{p^i} s_i \cdots s_{i+p-1} = 1, \text{ for } 1 \leq i \leq m - 1$$

$$s_i = 1 \text{ for } i \geq m.$$

By induction on m, we can show that $|H| = p^{m-1}$. The map $s : s_i \mapsto s_is_{i+1}$ extends to an automorphism of H of order p. The group $G = H \rtimes \langle s \rangle$ is a p-group of maximal
class, with an abelian subgroup H of index p. By Theorem 4.2.4, G has exactly $p + 2$ z-classes.

Note that, for $p = 2$, G is isomorphic to the dihedral group of order 2^n.

Remark 4.2.7. By above example, we see that, there are infinitely many non-isoclinic finite p-groups with exactly $p + 2$ z-classes.