• Lists of Figures

Figure 1.1. The vertical structure of the atmosphere deduced from the air temperature.

Figure 1.2. Schematic fair weather atmospheric boundary layer structure over land.

Figure 1.3. The boundary layer high pressure region over land this consists three major parts: A very turbulent mixing layer; a less turbulent residual layer containing former mixed layer air; A nocturnal stable boundary layer of sporadic turbulence (Stull, 1988).

Figure 1.4. Mean Characteristics of the ABL with the shape of profiles (After Driedonks and Tennekes, 1984).

Figure 1.5. Typical Stable boundary layer of mean (a) absolute temperature (b) potential temperature (c) wind speed and (d) specific humidity. (After Stull, 1991)

Figure 1.6. Typical profiles of potential temperature, wind and humidity over land in mid-latitudes during cloudless conditions (left panels) and Schematics of the typical ABL circulation and eddy structure of the ABL (right panels) in the day and night (from Kaimal and Finnigan, 1994).

Figure 2.1. The experimental setup on 9 m micrometeorological tower at Anand during LASPEX.

Figure 2.2. The experimental setup on 9 m micrometeorological tower at Vasco-da-Gama, Goa during ARMEX.

Figure 2.3. Micro-meteorological tower set-up with instruments at various heights at Mahabubnagar during IGOC experiment.

Figure 2.4. The Eddy Covariance system (sonic anemometer and H2O/CO2 sensors) installed at 6m height over Mahabubnagar.

Figure 3.1. Spectrum of wind components (u, v and w) and temperature at Anand on 17 July 1997.

Figure 3.2. Spectrum of wind components (u, v and w) and temperature at Anand on 17 August 1997.

Figure 3.3. Spectrum of wind components (u, v and w) and temperature at Anand on 17 September 1997.
Figure 3.4. Spectrum of (a) zonal component of wind and (b) air temperature at 2 and 8 m AGL at Anand.

Figure 3.5. Spectrum of (a) zonal component of wind and (b) air temperature at 2 and 8 m AGL at Khandha.

Figure 3.6. Spectrum of (a) zonal component of wind and (b) air temperature at 2 m AGL over Anand.

Figure 3.7. Spectrum of (a) zonal component of wind, (b) air temperature (b) and (c) specific humidity at 2 m AGL over Khandha.

Figure 3.8. Spectra of wind components (u, v and w) for (a) unstable, (b) near-neutral and (c) stable conditions on July 10, 2002.

Figure 3.9. Wind (longitudinal and vertical velocity) spectra for Internal Boundary Layer (IBL) and No-IBL under unstable conditions on the west coast station, Goa.

Figure 3.10. Spectra of half hourly mean (a) zonal, (b) meridional, (c) and vertical component of wind and (d) air temperature at 10 m AGL over a tropical east coast station at Sriharikota during October - December 2002.

Figure 3.11. Spectra of half hourly mean zonal component of wind at 10 m height over east coast station Sriharikota during August 2002 - June 2003.

Figure 3.12. Average power spectrum of CO₂ and water vapor in the unstable surface layer over Goa.

Figure 3.13. Average power spectrum of CO₂ and water vapor in stable surface layer over Goa.

Figure 3.14. Composite power spectrum of (a) CO₂ and (b) water vapour for different scales of motion in the surface layer over Goa.

Figure 4.1a,b. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) for unstable and stable conditions at Anand during June 13- 19, 1997 (The solid line represents the empirical relations applied to the present data).
Figure 4.1c,d. Normalized standard deviation of vertical velocity (c) and air temperature (d) for unstable and stable conditions at Anand during June 13-19, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.2a,b. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) for unstable and stable conditions at Anand during July 13-19, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.2c,d. Normalized standard deviation of vertical velocity (c) and air temperature (d) for unstable and stable conditions at Anand during July 13-19, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.3a,b. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) for unstable and stable conditions at Anand during August 12-18, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.3c,d. Normalized standard deviation of vertical velocity (c) and air temperature (d) for unstable and stable conditions at Anand during August 12-18, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.4a,b. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) for unstable and stable conditions at Anand during September 17-18, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.4c,d. Normalized standard deviation of vertical velocity (c) and air temperature (d) for unstable and stable conditions at Anand during September 17-18, 1997 (The solid line represents the empirical relations applied to the present data).

Figure 4.5. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Goa during July 02-17, 2002 (The solid line represents the empirical relations applied to the present data).
Figure 4.6. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Mahabubnagar during 1-30 September, 2011 (The solid line represents the empirical relations applied to the present data).

Figure 4.7. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Mahabubnagar during 1-31 October, 2011 (The solid line represents the empirical relations applied to the present data).

Figure 4.8. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Sriharighota during 1-31 October, 2002 (The solid line represents the empirical relations applied to the present data).

Figure 4.9. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Sriharikota during 1-30 November, 2002 (The solid line represents the empirical relations applied to the present data).

Figure 4.10. Normalized standard deviation of longitudinal wind velocity (a) and lateral wind velocity (b) and vertical velocity (c) for unstable and stable conditions at Sriharikota during 1-31 December, 2002 (The solid line represents the empirical relations applied to the present data).

Figure 5.1. Profiles of wind and temperature on the west coast at Vasco-da-Gama, Goa.

Figure 5.2. Log-linear wind profile for high wind (> 11 ms^{-1}) conditions on the west coast at Vasco-da-Gama, Goa (Roughness length, Z_o = 0.003 m).

Figure 5.3. Profiles of (a) air temperature, (b) virtual potential temperature, (c) wind speed, (d) direction and (e) relative humidity over Goa on 02 August 2002.

Figure 5.4. Profiles of (a) air temperature, (b) virtual potential temperature, (c) wind speed (d) direction and (e) relative humidity over Goa on 05 August 2002.

Figure 5.5. Profiles of (a) wind speed, (b) direction, (c) air temperature, (d) potential temperature, (e) relative humidity and (f) mixing ratio under neutral conditions at 0800 hrs on 10.12.2001 over east coast station, Anupuram.
Figure 5.6. Profiles of (a) wind speed, (b) direction, (c) air temperature, (d) potential temperature, (e) relative humidity and (f) mixing ratio under unstable conditions at 1415 hrs on 10.12.2001 over east coast station, Anupuram.

Figure 5.7. Profiles of (a) wind speed, (b) direction, (c) air temperature, (d) potential temperature, (e) relative humidity and (f) mixing ratio under neutral conditions at 1700 hrs on 10.12.2001 over east coast station, Anupuram.

Figure 5.8. Profiles of (a) wind speed, (b) direction, (c) air temperature, (d) potential temperature, (e) relative humidity and (f) mixing ratio under stable conditions at 2200 hrs on 10.12.2001 over east coast station, Anupuram.

Figure 5.9. Temperature profile from tethersonde at Anupuram on 10 July 2001 at 1000 hrs IST (the sea breeze onset was around 1100 hrs IST).

Figure 5.10. Temperature profile from tethersonde at Anupuram on 11 July 2001 at 1000 hrs IST (the sea breeze onset was around 1100 hrs IST).

Figure 5.11. Diurnal variation of sensible heat flux from sonic anemometer during (a) July 02-17,2002 and (b) April 14-18, 2003 at Goa.

Figure 5.11c-d. Time series of sensible heat flux from sonic anemometer during (a) July 02-17,2002 and (b) April 14-18, 2003 at Goa.

Figure 5.12. Diurnal variation of sensible heat flux at Goa by eddy correlation and profile methods.

Figure 6.1(a-c). Diurnal variation of wind speed at different heights over Anand.

Figure 6.1(d-f). Diurnal variation of air temperature at different heights over Anand.

Figure 6.2(a-b). Progression of daily mean wind speed and daily mean air temperature at 1 and 8 m heights AGL over Anand station.

Figure 6.3(a-c). Temporal variation of wind speed at different heights over Khandha.

Figure 6.3(d-f). Temporal variation of air temperature at different heights over Khandha.

Figure 6.4(a-c). Progression of (a) mean wind speed, (b) mean air temperature, and (c) relative humidity at two heights over Khandha.

Figure 6.5. Time series of rainfall over Anand and Khandha during June to September 1997.
Figure 6.6. Diurnal variation of horizontal wind speed (U) in (a) July, (b) August, (c) September and (d) October, 2002, when the winds are from sea over Goa.

Figure 6.6e. Diurnal variation of horizontal wind speed (U) in September and October, 2002, when winds are from land over Goa.

Figure 6.7. Variation of CO₂ and water vapor concentration in 1 minute time duration on 01 August 2002 over Goa.

Figure 6.8. Variation of CO₂ and water vapor concentration in 30 minute time duration on 01 August 2002 over Goa.

Figure 6.9. Daily variation of mean CO₂ and water vapor during 1-31 August 2002.

Figure 6.10. Diurnal variation of half hourly averaged CO₂ and water vapor for (a) July, (b) August, (c) September, and (d) October 2002 over Goa.

Figure 6.11. Mean variation of CO₂, water vapor and U component of wind in stable and unstable conditions during the period July to October 2002 over Goa.

Figure 7.1. Sodar echograms on thunderstorm and no-thunderstorm days during May, June, July, and August. (Precipitation is shown as thick red patch; relative intensity of thundershower is indicated through variation in thickness).

Figure 7.2. Wind vectors for all thunderstorm days with 15 minutes (averaging time) resolution over Pune.

Figure 7.3. Comparison plots of mean convective boundary layer (0800-1600 IST) vertical and horizontal winds for TS no-TS day over Pune.

Figure 7.4. Turbulent kinetic energy comparison at 300 m level for TS and no-TS days over Pune.

Figure 7.5. Turbulent kinetic energy contour plots till 600 m for pre-monsoon TS and no-TS days over Pune.

Figure 7.6. Turbulent kinetic energy contour plots till 600 m for monsoon TS and no-TS days over Pune.

Figure 8.1. Half hourly rainfall distribution during wet period for test stations.

Figure 8.2. Observed and simulated net radiation and skin temperature for Derol and Khandha during dry and wet period.

Figure 8.3. Observed and simulated soil temperature at different depth layers for Derol and Khandha during dry and wet period.
Figure 8.4. Observed minus simulated values of net radiation for LASPEX stations during dry and wet period

Figure 8.5. Observed minus simulated values of skin temperature for LASPEX Stations during dry and wet period.

Figure 8.6. Observed minus simulated values of soil temperature at depth 00-05 cm for LASPEX stations during dry and wet period.

Figure 8.7. Observed minus simulated values of soil temperature at depth 05-10 cm for LASPEX stations during dry and wet period.

Figure 8.8. Observed minus simulated values of soil temperature at depth 10-20 cm for LASPEX stations during dry and wet period.

Figure 8.9. Observed minus simulated values of soil temperature at depth 20-40 cm for LASPEX stations during dry and wet period.

Figure 8.10a. 15 days mean diurnal profile of simulated sensible, latent and ground heat fluxes for stations during dry periods.

Figure 8.10b. 15 days mean diurnal profile of simulated sensible, latent and ground heat fluxes for stations during wet periods.