ACKNOWLEDGEMENT

With great pleasure I take this opportunity to express my deep sense of gratitude and heartfelt thanks to several individuals and institutions from which I received impetus, motivation and invaluable help during the course of my research work.

I sincerely express my deep sense of everlasting profound gratitude to my Guruvarayya, my mentor, Dr. S. S. Pujar, Professor of Mathematics K.K. Wagh Institute of Engineering Education and Research Panchavati Nashik (M.S), former Professor and Head, post Graduate Research Centre for Ph.D Degree in Mathematics, SRES college of engineering Kopargaon(M.S), for his inspiring guidance, sustained interest, constant encouragement, invaluable discussions, moral support, suggestions and motivation through the course of my work without which the work would not have been completed. I am indebted to him and his family for their keen interest in my academic and personal welfare, which is instrumental in accomplishing this task.

I am grateful to the Principal, College of Engineering Kopargaon, Chairman and Management, Sanjivani Rural Education Society for providing all the necessary academic and administrative facilities and having a real vision to open Mathematics Research Centre in Engineering college. I am grateful to all staff members of SRES COE for their timely help in all situations; in particular I am very much grateful to, Mr. M. N. Deshmukh and their colleagues, the library staff and the office staff.

I am a very lucky faculty of K.K. Wagh Education Society in which Guru Sishayya Parampara is very much respected and celebrated every year in the names of greatest karmaputras of this sacred land. I
am very much thankful to the President Honorable Mr. Balasaheb Wagh, the management of K.K.W. Education Society and the Principal Dr. K.N. Nandurkar who is constant source of inspiration, for their continuous encouragement and help for providing me an opportunity to go for Ph.D and timely help to complete the Ph.D work.

I am especially thankful to my HOD Prof. S.N. Kadlag all my colleagues in Mathematics, Physics and Chemistry who have given me moral support throughout the research period, the entire HOD’s of various departments who have directly or indirectly supported, my special thanks to my very good friend prof. K.S. Holkar, the librarian Mr. P.S. Bodake. I am thankful to all the teaching and non teaching staff of KKWIEE&R.

I am very much thankful to my co-research colleague’s Mr. S.G. Purane, Mr. V.J. Khairnar, Mr. S.D. Deokhile, Mr. A.R. Tambe, Mr. M.V. Handore, also I am thankful to Dr. B.S. Waghe, Dr. S.M. Bhati

I express my deep appreciation and heartfelt thanks to my wife Sau. Rajashree whose constant support throughout the research work boosted my way of thinking, my son Shubham and daughter Pranali, also my sincere thanks to all my relatives whose moral support was instrumental in the completion of my research work.

Finally, it is impractical to provide accurate acknowledgements. Regardless of the source, I wish to express my gratitude to those who have contributed to this work, even anonymously.

Place: Kopargaon

(Sukhdev Shreemant Naik)
In 1930 Schouten and Van-Dantzing tried to transfer the results of Differential Geometry of spaces with Riemannian metric and affine connection to the case of spaces with complex structure. These spaces were also found independently by Kaehler in 1933 and are now called Kaahler spaces which are even dimensional. Also using the complex structure and differential 1-form on a manifold, a great deal of work is carried out on these manifolds from 1960 onwards. These are known as contact manifolds and are odd dimensional. One can obtain different structures like, Almost-Contact, K-Contact, Sasakian, Kenmotsu, Trans-Sasakian, etc. and the generalized versions of these manifolds by providing additional conditions to the contact structure.

The geometry of these manifolds were studied by many geometers like D.E.Blair, K.Yano, M.Kon, S.Sasaki, Kobayashi, Nomizy, J.Gray, M.H arada, Hatakeyama, M.Okumara, Tachibana, Goldberg, Ldden, H, Endo, B. Y.Chen, K. Arslan, K.S. Amur, S.S. Pujar, Y.B. Maralbhavi, U.C. De and his colleagues, Roy Sengupta, Ghosh and A.A. Shaikh, C.S. Bagewadi and his research colleagues M.M Tripathi, A. Bhattacharya, N. Guha, C. Ozgur S. Tanno, Hasanshahid, R.H. Oza, S.N. Pandey, Bhagawat Prasad H. Singh etc.

Contact geometry has been seen to underlay many physical phenomena and be related to many other mathematical structures. Contact structures first appeared in the work of Sophus Lie on partial differential equations. They reappeared in Gibbs’ work on
thermodynamics, Huygens’ work on geometric optics and in Hamiltonian dynamics. More recently contact structures have been seen to have relations with fluid mechanics, Riemannian geometry, low dimensional topology and provide an interesting class of sub elliptic operators.

The thesis consists of Eight Chapters. We recall in the First chapter the fundamental concepts, formulas and basic theorems which are needed in the rest of the chapters.

The body of the thesis begins from Chapter II; the title of the Chapter II is “On Weakly Ricci –Symmetric ε-Trans-Sasakian manifolds”. Chapter II deals with the continuation of the work of S.S Shukla and D.D Singh (S.S Shukla and D.D.Singh (On (ε)-Trans-Sasakian manifolds. Int. journal of Math.Analysis, vol.4, 2010, no, 49, 2401-2414.) On ε-Trans-Sasakian Manifold .In fact we studied some of the properties of weakly Ricci symmetric ε-trans-Sasakian manifold, examples for the existence of Weakly Ricci symmetric ε-trans-Sasakian manifold are discussed and these examples generalize the result of A.A.Shaikh and S.K Hui Absos Ali Shaikh and Shyamal Kumar Hui (On weak Symmetries of Trans-Sasakian Manifolds. Proceedings of the Estonian Academy of sciences 2009, 58, (4), 213-223).

The title of the chapter III is on weakly symmetric ε-Trans-Sasakian manifolds. Chapter III is again a continuation of the work of S.S.Shukla and D.D.Singh on ε-trans-Sasakian manifold, a new creation which is introduced by K.L Duggal (Space time Manifolds

The title of Chapter IV is “On generalized Recurrent and Ricci recurrent Trans-Sasakian manifolds”. In this chapter a general expression for the associated 1-forms \(\omega \) and \(\mu \) is obtained for any smooth functions \(\alpha \) and \(\beta \) in a generalized recurrent trans-Sasakian structure of a Riemannian manifold \(M^{2n+1} \). A series of theorems and lemma’s are obtained for it’s subsidiaries of Trans –Sasakian manifolds.

The title of Chapter V is “On generalized \(\phi \)-Recurrent, Concircular \(\phi \)-Recurrent, and Projective \(\phi \)-Recurrent Trans –Sasakian Manifolds.” This chapter is devoted to the study some of the properties of generalized \(\phi \)-recurrent and generalized Concircular \(\phi \) -recurrent Trans Sasakian manifolds and generalize the some of the results of Asli Basari, Cengizhan Murathan(On generalized\(\phi \)-recurrent Kenmotsu manifolds ,FEN DERGISI(E-

The title of Chapter VI is “On Weakly φ-Symmetric Trans- Sasakian Manifolds”. In this chapter we mainly introduce a notion of Weakly φ- Symmetric Trans- Sasakian Manifold, and discussed its properties. A series of corollaries from the main theorems are also obtained as a special case and a concrete example for the existence of such manifolds is provided.

The Title of Chapter VII is “on Weakly φ-Ricci Symmetric Trans-Sasakian Manifolds” In this chapter we introduced the notion of weakly φ- Ricci-symmetric trans -Sasakian manifolds of dimension (M^{2n+1}, g) (n>1) and studied the various properties. Finally the existence of weakly φ- Ricci-symmetric Trans -Sasakian manifold is ensured by an example.

The title of the last Chapter VIII is “Some Properties of Kenmotsu Manifolds” The purpose of this chapter is to study some properties of W_2-Semisymmetric, Kenmotsu manifolds, Projectively flat Einstein Kenmotsu manifolds and Conharmonically flat Einstein Kenmotsu manifolds.

S. S. Naik