LIST OF TABLES

Table 2.1: Fibrinolytic enzyme producing microbes isolated from traditional foods 42
Table 2.2: Fibrinolytic enzymes produced by non-food borne microbes 43
Table 2.3: Methods for identification of fibrinolytic enzymes producing bacteria... 44
Table 2.4: Purification of fibrinogenolytic enzymes from bacterial sources 47
Table 2.5: Biochemical properties of microbial fibrinolytic enzymes 49
Table 2.6: Various methods of thrombus formation in animal models 53
Table 3.1: Optimal PCR reaction conditions for amplification of conserved region of 16S-rRNA gene of selected protease secreting bacterial strains 65
Table 4.1: Screening for fibrin(ogen)olytic enzyme producing bacteria from different samples of northeast India... 92
Table 4.2: Identification of fibrin(ogen)olytic enzyme producing potential bacteria 92
Table 4.3: Biochemical and morphological tests of bacterial strain FF01 94
Table 4.4: Partial DNA sequence of conserved region of 16S rRNA gene of the strain FF01 .. 95
Table 4.5: Homologous search results of 16S rRNA gene partial sequence of strain FF01 using Basic Local Alignment Tool (BLAST) from National Centre Biotechnology Information (NCBI)... 95
Table 4.6: Homologous search results of 16S-23S ISR partial sequence of strain FF01 using Basic Local Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI)... 98
Table 4.7: Summary of purification of Bacethrombase from Bacillus cereus strain FF01 ... 103
Table 4.8: Amino acids composition of Bacethrombase (% nmol). The analysis procedure has been described in section 3.2.8.3.................................. 104
Table 4.9: Determination of substrate specificity of Bacethrombase 105
Table 4.10: The substrate specificity of Bacethrombase at 37 °C, pH 7.4. 110
Table 4.11: Effect of various inhibitors on fibrin(ogen)olytic activity of Bacethrombase

Table 4.12A: Group mean terminal body weight (g) of control and treated rats for 14 days

Table 4.12B: Group mean food consumption (g/kg body weight/day) trends for male Wistar albino rats for 14 days

Table 4.12C: Group mean water consumption (mL/kg body weight/day) trends for male Wistar albino rats for 14 days

Table 4.12D: A comparison of hematological parameter in Bacethrombase treated and control rat after 14 days of i.v. injection (i.v.)

Table 4.13: A comparison of some biochemical properties of serum of control and Bacethrombase-treated rats, after 14 days of i.v. injection at a dose of 10 mg/kg

Table 4.14: A comparison of in vivo thrombolytic activity of Bacethrombase, plasmin and streptokinase after 24 h of treatment on Wistar strain rat

Table 5.1: Screening for fibrinolytic enzyme producing bacteria from different samples of North-East India

Table 5.2: Identification of fibrinolytic enzyme producing potential bacteria based on fibrinolytic / caseinolytic ratio, substrate specificity and thrombolytic activity

Table 5.3: Biochemical and morphological tests of bacterial strain FF02B. Experiments were repeated in triplicates to ensure the reproducibility.

Table 5.4: Homologous search results of 16S-rDNA partial sequence of strain FF02B using Basic Local Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI)

Table 5.5: Homologous search results of 16S-23S ISR partial sequence of strain FF02B using Basic Local Alignment Tool (BLAST) tool from National Centre Biotechnology Information (NCBI)

Table 5.6: Summary of purification of Brevithrombolase from Brevibacillus brevis strain FF02B. The enzyme activity was assessed against fibrin
Table 5.7: Amino acids composition of Brevithrombolase (% nmol) 158

Table 5.8: Determination of substrate specificity of Brevithrombolase Values is mean ± S.D... 159

Table 5.9: Determination of substrate specificity of Brevithrombolase 162

Table 5.10: The effect of inhibitors on fibrinolytic activity of Brevithrombolase . 163

Table: 5.11: A comparison of in vitro thrombolytic activity among Brevithrombolase, plasmin and Streptokinase under identical experimental conditions... 167

Table 5.12a: Group mean terminal body weight (g) of control and treated rats for 14 days .. 175

Table 5.12 b: Group mean food consumption (g/kg body weight/day) trends for male Wistar albino rats for 14 days. ... 175

Table 5.12c: Group mean water consumption (mL/kg body weight/day) trends Wistar albino rats for 14 days. .. 175

Table 5.13: A comparison of hematological parameter in Brevithrombolase (10 mg/ml) treated and control rat after 14 days of injection (i.v). 175

Table 5.14: A comparison of some biochemical properties of serum of control and Brevithrombolase-treated rats... 177

Table 5.15: A comparison of in vivo thrombolytic activity of Brevithrombolase, plasmin and Streptokinase after 24 h of treatment on Wistar strain rat 181