CONTENTS

CHAPTER – 1 Introduction
1. Introduction
1. 1. Regional Geology
 1. 1. 1. Schists (Supracrustal Rocks)
 1. 1. 2. Relationship of Schist (greenstone) – gneiss
 1. 2. Shimoga Schist Belt
 1. 2. 1. Previous work on Shimoga schist belt
 1. 2. 2. Stratigraphic sequence
 1. 2. 3. Jhandimatti Formation
 1. 3. Area under Investigation
 1. 3. 1. Locality and accessibility
 1. 3. 2. Physiography, Vegetation and Soil cover
 1. 3. 3. Climate, Rainfall and Drainage Pattern

CHAPTER – 2 V-Ti magnetite ores
2. Introduction
2. 1. Vanadium
2. 2. Titanium
2. 3. Mode of Occurrence and importance of V-Ti Magnetite Ore Deposits
2. 4. V-Ti Magnetite Deposits of India
2. 4. 1. V-Ti Magnetite Deposits of Karnataka
2. 5. Previous work on the area under investigation
2. 6. Objectives of the present investigation
2. 7. Investigation Methodology
 2. 7. 1 Field Studies
 2. 7. 2 Laboratory investigation
 2. 7. 2 Chemical analysis - XRF.
CHAPTER - 3 Geological Setting of the Study Area

3. Introduction
3.1. Geological setting
3.2. Litho-Stratigraphy of Devarnarsipur ultramafic-mafic complex
3.2.1. Peninsular Gneiss Complex
3.2.2. Quartzite
3.2.3. Schists
3.2.3.1. Quartz-chlorite-calcite schist
3.2.3.2. Quartz-chlorite schist
3.2.4. Ultramafic Mafic Complex
3.2.5. Gabbro-Anorthosite Suite
3.2.5.1. Magnetite-gabbro
3.2.5.2. Gabbro
3.2.5.3. Anorthositic gabbro
3.2.5.4. Gabbroic anorthosite
3.2.5.5. Anorthosite
3.2.6. V-Ti-Magnetite Deposits
3.3. Details of drilling exploration
3.4. Ore Reserves Estimate

CHAPTER - 4. Petrography and Mineralology

4. Introduction
4.1. Gneisses
4.1.1. Petrology
4.1.2. Mineralogy
4.2. Schists
4.2.1. Petrography
4.2.1.1. Quartz-chlorite-calcite schist
4.2.2.2. Quartz-chlorite schist
4.2.2. Mineralogy
4.3. Quartzites
4.3.1. Petrography
4.3.2. Mineralogy
4.4. Ultramafic rocks
4.4.1. Petrography and Mineralogy
4.4.1.1. Chromite bearing dunite
4.4.1.2. Hornblendite
4.4.1.3. Metapyroxenite
4.4.1.4. Talc-chlorite schist
4.5. Gabbro-Anorthosite Suite
4.5.1. Petrography
4.5.1.1. Magnetite-gabbro
4.5.1.2. Gabbro
4.5.1.3. Anorthositic gabbro
4.5.1.4. Gabbroic anorthosite
4.5.1.5. Anorthosite
4.5.2. Mineralogy

5. Introduction
5.1. Macroscopic Textural Features of the Ores
5.2. Minerographic Features of the V-Ti- Magnetite ores
5.2.1. Oxide Assemblage
5.2.1.1. Ti magnetite
5.2.1.2. Ulvospinel
5.2.1.3. Pleonaste
5.2.1.4. Ilmenite
5.2.1.4.1 Coarse Granular Ilmenite
5.2.1.2. Fine Inter-granular ilmenite
5.2.1.3. Lamellar Ilmenite
5.2.1.5. Maghemite
5.2.1.6. Hematite and Martite
5.2.1.7. Goethite
5.2.2. Sulphide Assemblage
5.3. Weathering of V-Ti Magnetite ores
5.4. Micro Structural Evolution
5.5. Paragenesis

CHAPTER - 6. Petrochemistry and Genesis of Ultramafic-mafic rocks
and V-Ti-Magnetite ores

6. Introduction
6.1. Geo chemistry
6.2. Major and Trace elements
6.2.1. Ultramafic rocks
6.2.2. Gabbro-anorthosite suite of rocks
6.2.3. V-Ti magnetite ores
6.3. Interpretation of Geochemical Data
6.3.1. AFM diagram
6.3.2. Compositional trend Diagrams of MgO Vs (CaO, Al2O3, FeOi, and TiO\textsubscript{2})
6.3.3. Index of fractionation (F) Plots of Major elements vs. 100 FeOi / (FeOi+MgO) Vs FeOi
6.3.4. Diagrams of FeOi and TiO\textsubscript{2} Vs. 100 FeOi / (FeOi+MgO)
6.3.5. Diagrams of MgO Vs 100 FeOi / (FeOi+MgO)
6.3.6. Diagrams of CaO and Al2O3 Vs. 100 FeOi / (FeOi+MgO)
6.3.7. Diagram of Na2O Vs 100 FeOi / (FeOi+MgO)
6.3.8. Diagram of K2O Vs 100 FeOi / (FeOi+MgO)
6.3.9. Diagram of SiO\textsubscript{2} Vs 100 FeOi / (FeOi+MgO)
6.3.10. Interpretation of Major Vs Trace Elements
6.4. Genetic models on V-Ti magnetite deposits
6.4.1. V-Ti magnetite deposits In India
6.4.2. V-Ti magnetite deposits of Karnataka
6.5. Genetic models
6.5.1. Earlier genetic models
6.5.2. Later genetic models
6.5.3. Origin of V-Ti Magnetite and host rocks In Devarnarsipur Area
CHAPTER - 7. SUMMARY AND CONCLUSIONS

REFERENCES

PUBLICATIONS

List of Maps

Map 1. Generalized geological map of Peninsular India KN-Karnataka nucleus
Map 2. Cratons and joins in peninsular India. Rift valleys
Map 3: Map of Shimoga schist belt produced by officers of Geological survey of India.

List of Tables

Table 1. A generalized geochronology of Karnataka Nucleus was given by Radhakrishna and Naqvi (1986)
Table 2, The stratigraphic sequence for the Shimoga schist belt as proposed by Harinadha Babu et al. (1981)
Table 3.1. The stratigraphic sequence of the Devarnarsipur area
Table 6.1, Analysis data of V-Ti-Magnetite ore giving the weight percentage of Major element of the samples reported by B.G.Channappa and K.S.Raghuveera at Devarnarsipur area during the 1974 Geological report.
Table 6.2. XRF Analysis data of Ultramafic rocks, giving the weight percentage of Major element of the samples at Devarnarsipur.
Table 6.3. XRF Analysis data of Gabbro-anorthosite rocks, giving the weight percentage of Major element of the samples at Devarnarsipur
Table 6.4. XRF Analysis data of V-Ti magnetite ores, giving the weight percentage of Major element of the samples at Devarnarsipur