LIST OF FIGURES

CHAPTER I

Figure 1.1. Geological map of South India, after Ramakrishnan and Vaidyanandan, 2008.

CHAPTER II

Figure 2.1. Geological map of Closepet granite (after Moyen et al., 2003).

Figure 2.2. Geological map of the study area (Compiled from geological maps by the Geological Survey of India).

Figure 2.3. Peninsular gneiss showing banding with alternate light coloured layers and melanocratic bands, Achalu, Ramanagaram. Note the late shears cross-cutting the Peninsular gneiss.

Figure 2.4. Ductile, N20°E trending shears within the migmatitic gneiss, Ramanagaram.

Figure 2.5. Enclave of gneiss within the Closepet granite showing complex folding pattern, K.G. Vasahalli.

Figure 2.6. Isoclinal folds in biotite-gneiss and emplacement of pink granite along the gneissic foliation.

Figure 2.7. Late, E-W trending brittle fractures in Peninsular gneiss, Chickamadavaddi.

Figure 2.8. Biotite and amphibole showing orientation parallel to the gneissic foliation, gneiss, Bidadi.

Figure 2.9. Presence of relict isoclinal folds in charnockites, Tagatti, Tamil Nadu.

Figure 2.10. Banded charnockite with alternate leucocratic and melanocratic bands, Satnuru

Figure 2.11. Banded charnockite showing stretching of orthopyroxene and lineation plunging 40° dipping SW.

Figure 2.12. An overview of Kunkundoddi massive to banded charnockite quarry.

Figure 2.13. E-W trending late brittle fracture filled by green coloured epidote vein, Kunkundoddi.

Figure 2.14. Quartz and plagioclase showing good grain boundary contact with fresh ferro-hypersthene exhibiting igneous texture, massive charnockite, Kunkundoddi.

Figure 2.15. Quartz grain exhibiting triple junction point, showing granulitic to granoblastic microtexture in charnockite, Satnuru. Note: presence of trails of fluid inclusions.
Figure 2.16. Fresh ferrohypersthene (XMg =0.50) with rounded inclusions of quartz, plagioclase and brownish biotite in massive charnockite, Kunkundoddi.

Figure 2.17. Orthopyroxene showing development of subgrains during deformation, Anchatti, Tamil Nadu.

Figure 2.18. Orthopyroxene showing granulitic texture in contact with yellowish green amphibole in banded charnockite, Satnuru.

Figure 2.19. Enclave of basic granulite within massive charnockite, Dasanadoddi.

Figure 2.20. Porphyroblastic garnet (garnet I) with inclusions of plagioclase and clinopyroxene in basic granulites, B.R. Hills.

Figure 2.21. Formation of coronitic garnet (garnet II) at the contact of orthopyroxene and plagioclase in basic granulites (Plain polarized light), B.R. Hills.

Figure 2.22. Formation of coronitic garnet (garnet II) at the contact of orthopyroxene and plagioclase in basic granulites (Crossed nicoles), B.R. Hills.

Figure 2.23. Bent lamellae in biotite in basic granulites, Hosadurga.

Figure 2.24. Biotite showing bent lamellae in basic granulites, Hosadurga.

Figure 2.25. Emplacement of porphyritic monzogranite along shear plane within Peninsular gneiss, Achalu, Ramanagaram.

Figure 2.26. Partial melting of gneiss with emplacement of pink granite along fractures in Peninsular gneiss, Ramanagaram.

Figure 2.27. Feldspar phenocrysts in medium grained matrix of quartz, plagioclase, K-feldspar, biotite and hornblende in porphyritic monzogranite, Ramanagaram.

Figure 2.28. Stretched feldspar phenocrysts in deformed porphyritic monzogranite, Ramanagaram.

Figure 2.29. Recrystallized quartz showing sutured grain boundary in deformed porphyritic monzogranite, Ramanagaram.

Figure 2.30. Exsolution of iron oxide in biotite along cleavage planes in porphyritic monzogranite, Ramanagaram.

Figure 2.31. Brownish biotite surrounding bluish green amphibole in porphyritic monzogranite, Ramanagaram.

Figure 2.32. Bluish green hornblende, brownish biotite and plagioclase in porphyritic monzogranite, Ramanagaram.

Figure 2.33. Partial melting and formation of allanite-bearing pink granite along two sets of ductile shears within the Peninsular gneiss, Chickamadavaddi.

Figure 2.34. Pink granite veins parallel to gneissic foliation, Kanakapura.
Figure 2.35. Allanite-bearing pink granite intruding folded gneiss, Kanakapura.

Figure 2.36. Well-foliated gneissic enclave within the pink granite, Kanakapura.

Figure 2.37. Plagioclase showing lobate grain boundaries with K-feldspar and quartz in pink granite, Kanakapura.

Figure 2.38. Flattened quartz grain exhibiting irregular grain boundaries in pink granites, Kanakapura.

Figure 2.39. Recrystallized quartz grains showing triple junction point in pink granite, Kanakapura.

Figure 2.40. Alteration of feldspars to talc and sericite and iron oxide along twin planes, pink granite, Satnuru.

Figure 2.41. Stringes of plagioclase in K-feldspar exhibiting perthitic texture in pink granite, Satnuru.

Figure 2.42. Development of myrmekitic texture at the contact between plagioclase and quartz in pink granite, Kanakapura.

Figure 2.43. Phenocrysts of K-feldspar showing random occurrence in porphyritic syenite, Kundurubetta.

Figure 2.44. Rounded to sub-rounded feldspar phenocrysts in medium grained matrix of plagioclase, K-feldspar, biotite and clinopyroxene, in porphyritic syenite, Kundurubetta.

Figure 2.45. K-feldspar phenocrysts showing orientation parallel to N70°E in porphyritic syenite, Kundurubetta.

Figure 2.46. Mafic enclave showing sharp contact with the host syenite, Kundurubetta.

CHAPTER III

Figure 3.1. Classification of plagioclase in Peninsular gneiss.

Figure 3.2. Classification of amphibole in Peninsular gneiss.

Figure 3.3. Classification of biotite in Peninsular gneiss.

Figure 3.4. Backscattered image of basic granulites, B.R. Hills.

Figure 3.5. Backscattered image of basic granulites, B.R. Hills.

Figure 3.6. Classification of plagioclases in basic granulites.

Figure 3.7. Classification of pyroxenes in basic granulites.

Figure 3.8. Classification of amphiboles in basic granulites.

Figure 3.9. Backscattered image of massive charnockites, Tagatti, TN.
Figure 3.10. Classification of plagioclases in massive/banded charnockites.

Figure 3.11. Classification of orthopyroxenes in massive/banded charnockites.

Figure 3.12. Classification of biotites in massive/banded charnockites.

Figure 3.13. Classification of amphiboles in massive/banded charnockites.

Figure 3.14. Backscattered image of pink porphyritic monzogranites, Ramanagaram.

Figure 3.15. Backscattered image of pink granites, Kanakapura.

Figure 3.16. Classification of plagioclases in granitoids.

Figure 3.17. Classification of amphiboles in granitoids.

Figure 3.18. Classification of biotites in granitoids.

Figure 3.19. P-T diagram for basic granulites and massive/banded charnockites

CHAPTER IV

Figure 4.1. Pseudosecondary high density CO$_2$-rich fluid inclusions showing negative crystal shape, in massive charnockites, Kunkundoddi.

Figure 4.2. Primary, high salinity aqueous fluid inclusions showing cubic daughter crystal of halite in massive charnockites, Kunkundoddi.

Figure 4.3. Primary, high salinity aqueous fluid inclusions showing cubic daughter crystal of halite in banded charnockites, Gavimatta.

Figure 4.4. Low salinity aqueous fluid inclusions in massive charnockites, Kunkundoddi.

Figure 4.5. Secondary mixed CO$_2$-H$_2$O fluid inclusions in massive charnockites, Kunkundoddi.

Figure 4.6. Secondary low density CO$_2$-rich fluid inclusions in banded charnockites, Gavimatta.

Figure 4.7. Histograms of melting temperature of halite daughter crystal in high salinity aqueous inclusions in massive/banded charnockites.

Figure 4.8. Histograms of total homogenization in high salinity aqueous inclusions in massive/banded charnockites.

Figure 4.9. Histogram of homogenization temperature for carbonic inclusions in massive/banded charnockites.

Figure 4.10. High salinity aqueous inclusion in porphyritic monzogranite, Ramanagaram.
Figure 4.11. Primary, isolated CO$_2$-rich fluid inclusion in porphyritic monzogranite, Ramanagaram.

Figure 4.12. Low salinity aqueous fluid inclusions in porphyritic monzogranite, Ramanagaram.

Figure 4.13. Secondary CO$_2$-H$_2$O inclusions showing low density carbonic phase in porphyritic monzogranite, Ramanagaram.

Figure 4.14. Histogram of homogenization temperature of low salinity aqueous inclusions in porphyritic monzogranite.

Figure 4.15. Histogram of homogenization temperature of CO$_2$-rich inclusions in porphyritic monzogranite.

Figure 4.16. Histogram of melting temperature of halite daughter crystal in high salinity aqueous inclusions in porphyritic monzogranite.

Figure 4.17. Histogram of melting of halite daughter crystal in high salinity aqueous inclusions in porphyritic monzogranites, Ramanagaram.

Figure 4.18. High density, pseudosecondary trail of CO$_2$-rich fluid inclusions showing negative crystal shape in pink granite, Kanakapura.

Figure 4.19. Low salinity aqueous fluid inclusions in pink granite, Kanakapura.

Figure 4.20. Secondary, Irregular shaped mixed CO$_2$-H$_2$O inclusions in pink granite, Kanakapura.

Figure 4.21. Secondary mixed CO$_2$-H$_2$O inclusions in showing dumble shape in pink granite, Kanakapura.

Figure 4.22. Histogram of homogenization temperature for low salinity aqueous inclusions in homogenous pink granite.

Figure 4.23. Histogram of homogenization temperature for carbonic inclusions in homogenous pink granite.

Figure 4.24. P-T estimates based on intersection of fluid inclusion isochores (filled area) and P-T box estimated from mineral chemistry in massive/banded charnockites.

Figure 4.25. P-T estimates based on intersection of fluid inclusion isochores (filled area) and P-T box estimated from mineral chemistry in porphyritic monzogranites.

CHAPTER V

Figure 5.1. Migmatitic gneiss with ductile shears (N20°E) and complex folding pattern, Kabbaldurga.

Figure 5.2. Leucocratic (quartz-plagioclase-K-feldspar-bearing) and Melanocratic (biotite-hornblende-bearing) bands in migmatitic gneiss cut by late N20°E trending shears, Kabbaldurga.
Figure 5.3. Deformed quartz grains in migmatitic gneiss, Kabbaldurga.

Figure 5.4. Beads of K-feldspar in plagioclase exhibiting antiperthitic texture in migmatitic gneiss, Kabbaldurga.

Figure 5.5. Emplacement of pink granite along the ductile shears within the migmatitic gneiss Kabbaldurga.

Figure 5.6. Granite veins intruding parallel to gneissic foliation often with biotite-rich margins, Kabbaldurga.

Figure 5.7. Enclaves of migmatitic gneiss within the irregular network of pink granite, Kabbaldurga.

Figure 5.8. Brownish zone in the contact of pink granite and migmatitic gneiss indicating fluid activity, Kabbaldurga.

Figure 5.9. Gneissic patch showing granulitic texture within pink granite, Kabbaldurga.

Figure 5.10. Stringlets of plagioclase exhibiting perthitic texture in pink granite, Kabbaldurga.

Figure 5.11. Myrmekitic texture in contact between K-feldspar and quartz in pink granite, Kabbaldurga.

Figure 5.12. Development of incipient charnockite with brownish coloured orthopyroxene clots along ductile shears cross-cutting migmatitic gneiss, Kabbaldurga.

Figure 5.13. Development of orthopyroxene-bearing incipient charnockitic patches along fractures in migmatitic gneiss, Kabbaldurga.

Figure 5.14. Development of orthopyroxene-bearing incipient charnockitic patches with orthopyroxene clots along foliation of migmatitic gneiss, Kabbaldurga.

Figure 5.15. Late ductile fractures cross-cutting migmatitic gneisses with development of incipient charnockites, Kabbaldurga.

Figure 5.16. Occurrence of orthopyroxene adjacent to biotite and opaque minerals in incipient charnockite, Kabbaldurga.

Figure 5.17. Classification of plagioclase in rock types of Kabbaldurga area.

Figure 5.18. Classification of amphiboles in rock types of Kabbaldurga area.

Figure 5.19. Primary CO$_2$-rich fluid inclusions in porphyritic grey granite, Kabbaldurga.

Figure 5.20. Secondary carbonic fluid inclusion showing necking down in porphyritic grey granite, Kabbaldurga.

Figure 5.21. Isolated, primary carbonic inclusion showing negative crystal shape in quartz grain of pink granite, Kabbaldurga.
Figure 5.22. High density CO$_2$-rich fluid inclusions in quartz grain of pink granite, Kabbaldurga.

Figure 5.23. Pseudosecondary CO$_2$-rich fluid inclusions showing negative crystal shape in quartz grain of pink granite, Kabbaldurga.

Figure 5.24. Trails of low salinity aqueous fluid inclusions in quartz grain of pink granite, Kabbaldurga.

Figure 5.25. Pseudosecondary trails of low salinity aqueous fluid inclusions in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.26. Primary CO$_2$-rich fluid inclusion showing negative crystal shape in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.27. Pseudosecondary trails of carbonic fluid inclusions in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.28. Secondary, low density fluid inclusions in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.29. Secondary trail of carbonic fluid inclusions in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.30. Secondary, low density fluid inclusions in quartz grain of incipient charnockites, Kabbaldurga.

Figure 5.31. Histogram of homogenization temperature of CO$_2$ inclusions in pink granite, Kabbaldurga.

Figure 5.32. Histogram of homogenization temperature of low salinity aqueous inclusions in pink granite, Kabbaldurga.

Figure 5.33. Histogram of homogenization temperature of CO$_2$ inclusions in incipient charnockite, Kabbaldurga.

Figure 5.34. Histogram of homogenization temperature of CO$_2$ inclusions in grey porphyritic granite, Kabbaldurga.

Figure 5.35. Histogram of homogenization temperature of low salinity aqueous inclusions in grey granite, Kabbaldurga.

Figure 5.36. Isochores of high salinity aqueous and carbonic inclusions in pink granite, Kabbaldurga.

Figure 5.37. Isochores of primary carbonic inclusions in incipient charnockite, Kabbaldurga.