List of tables

Chapter-1: General introduction to liquid crystals

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical structure of bent core compounds exhibiting uniaxial nematic to biaxial nematic phase</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Influence of outer ring substituents on the phase behaviour of the bent core molecule</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Influence of the outer ring substitution of the five ring 1,3,4-oxadiazole bent core molecules</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>Four ring 1,3,4-oxadiazole bent core molecule</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Influence of length of alkyl chain length and the polar group in the central phenyl ring of a five ring bent core molecule</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Influence of the terminal alkyl chain length on the cyano-substituted bent core molecule</td>
<td>21</td>
</tr>
<tr>
<td>1.7</td>
<td>Unsymmetrical six-ring bent-core compounds bearing terminal polar cyano group and lateral substituents</td>
<td>21</td>
</tr>
<tr>
<td>1.8</td>
<td>Symmetrical six ring bent core molecule based on 2,7-dihydroxy naphthalene having cinnamate linkage</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Unsymmetrical piperazine based bent core molecule and their phase sequence</td>
<td>23</td>
</tr>
<tr>
<td>1.10</td>
<td>Chemical structure of three ring bent core molecule and their phase sequence</td>
<td>24</td>
</tr>
<tr>
<td>1.11</td>
<td>Chemical structure and phase sequence of bent core molecules derived from benzodithiophene</td>
<td>25</td>
</tr>
</tbody>
</table>

Chapter-2: Survey of literature: Oligo derived bent core liquid crystals

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Molecular structure of end to end bent core dimers and influence of lateral substitution and nature of the linkage on the mesomorphism of dimers</td>
<td>46</td>
</tr>
<tr>
<td>2.2</td>
<td>Influence of the position of the lateral fluoro group, length of the alkylene spacers and the length of the end alkyl chain on the end to end bent core dimers</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Apex connected bent core dimesogen and phase behavior...</td>
<td>48</td>
</tr>
</tbody>
</table>

Chapter-4A: Oligomers: Bent-core liquid crystal (bent core dimers)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.a.1</td>
<td>DSC data of the compound 1,9-OM, 1,9-o-OM and 1,9-m-OM</td>
<td>130</td>
</tr>
<tr>
<td>4.a.2</td>
<td>A summary of the photo-physical properties of dimers in Chloroform (1x10⁻³ M)</td>
<td>142</td>
</tr>
</tbody>
</table>

Chapter-4B: Novel achiral 4-ring unsymmetrical bent core liquid crystals

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.b.1</td>
<td>DSC data of the homologues series n-2M-OM</td>
<td>155</td>
</tr>
<tr>
<td>4.b.2</td>
<td>DFT calculated dipole moment components (μₓ, μᵧ, μz)</td>
<td></td>
</tr>
</tbody>
</table>
and the resultant dipole moment (μ), bending angle and molecular length of the compound.

Table 4.b.3: DFT calculated principal polarizability components (α_{XX}, α_{YY}, α_{ZZ}), isotropic component $\alpha_{\text{iso}} = (\alpha_{XX} + \alpha_{YY} + \alpha_{ZZ})/3$, Polarizability anisotropy $\Delta \alpha = [\alpha_{XX} - (\alpha_{YY} + \alpha_{ZZ})/2]^2$, and asymmetry parameter, $\eta = [(\alpha_{YY} - \alpha_{ZZ})/(\alpha_{XX} - \alpha_{\text{iso}})]$. Parameters relative to the molecular polarizability tensor in the Cartesian Reference frame.

Table 4.b.4: Energy of HOMO, LUMO and their difference in eV.

Chapter 4C: Novel achiral 4-ring unsymmetrical bent core liquid crystals: methyl substitution at lateral position

Table 4.c.1: DSC data of the homologues series n-2M-oM-OM
Table 4.c.2: DSC data of the homologues series n-2M-mM-OM

Chapter 4D: Copper (II) complexes of achiral four-ring unsymmetrical bent-core liquid crystals

Table 4.d.1: Copper-salicylaldimine compounds exhibiting mesomorphism
Table 4.d.2: DSC data of the homologues series [n-2M-OM]$_2$Cu
Table 4.d.3: DSC data of the compounds 8-2M-OM, 18-2M-OM, [8-2M-OM]$_2$Cu and [18-2M-OM]$_2$Cu
Table 4.d.4: DSC data of the homologues series [n-2M-oM-OM]$_2$Cu
Table 4.d.5: DSC data of the compounds 8-2M-oM-OM and [8-2M-oM-OM]$_2$Cu
Table 4.d.6: DSC data of the homologues series [n-2M-mM-OM]$_2$Cu.
Table 4.d.7: DSC data of the compounds 8-2M-mM-OM and [8-2M-mM-OM]$_2$Cu.
Chapter-1: General introduction to liquid crystals

Figure 1.1: Chemical structure of cholesteryl benzoate ... 3
Figure 1.2: Chemical structure of N-(4-methoxybenzylidene)-4-methyl aniline ... 4
Figure 1.3: Chemical structure of N-(4-n-decyloxybenzylidene)-2-methyl butyl-4'-aminocinnamate ... 4
Figure 1.4: Chemical structure of hexa ester of 1,2,3,4,5,6-hexahydroxy benzene ... 5
Figure 1.5: Chemical structure of 1,3-phenylene bis[4-(4-n-octyloxyphenyl iminomethyl)] benzoate .. 5
Figure 1.6: Representation of Calamitic molecule (l>b) .. 6
Figure 1.7: (a) Thread like texture of nematic phase; (b) Model structure of nematic phase ... 7
Figure 1.8: (a) Model structure of SmA phase; (b) Batonnets texture of SmA phase ... 7
Figure 1.9: (a) Model structure of SmC phase; (b) Schlieren texture of SmC phase .. 8
Figure 1.10: (a) Arrangement of molecules in discotic nematic phase; (b) Schlieren texture of discotic nematic phase 8
Figure 1.11: (a) Arrangement of molecules in discotic columnar phase; (b) Pseudo focal conic fan shaped texture of discotic columnar phase .. 9
Figure 1.12: General structure of bent core molecule ... 10
Figure 1.13: The chemical structure of substituted 4-cyanoresorcinol bisbenzoates .. 14
Figure 1.14: Chemical structure of 1,2,4-oxadiazole bent core molecule 14
Figure 1.15: Chemical structure of unsymmetrical 1,3,4-oxadiazole bent core molecule .. 15
Figure 1.16: Chemical structure of seven ring bent core molecule 15
Figure 1.17: Three ring 1,3,4-thiazole bent core molecule ... 15
Figure 1.18: Five ring 1,3,4-oxadiazole based bent core molecule bearing lateral alkoxy chain .. 16
Figure 1.19: Fluorenone based five ring bent core molecules ... 16
Figure 1.20: Six ring piperazine containing bent core molecule 17
Figure 1.21: Six ring dicyclohexylmethanes containing bent core molecules 18
Figure 1.22: Seven ring bent core molecule .. 18
Figure 1.23: Non symmetrical seven ring 1,3,4-thiazole bent core molecule 18
Figure 1.24: Five ring unsymmetrical 1,2,4-oxadiazole bent core molecule 18
Figure 1.25: Five ring cyano substituted bent core molecule ... 19
Figure 1.26: Five ring bent-core molecules bearing fluoro group at the outer ring 20
Figure 1.27: Chemical structure of bromo-substituted bent core molecule 23
Chapter-2: Survey of literature: Oligo derived bent core liquid crystals

Figure 2.1: Different molecular architecture of liquid crystal dimers with one example ... 33
Figure 2.2: Different molecular architecture of liquid crystal trimmers 34
Figure 2.3: General structure of liquid crystal dimer .. 34
Figure 2.4: Few symmetric liquid crystal dimers reported in literature 36
Figure 2.5: Few non-symmetric liquid crystal dimers reported in literature 36
Figure 2.6: Molecular structure of (a) \(\alpha, \alpha' \)-bis(4-cyanobiphenyl-4'-oxy)alkanes; (b) 4-alkoxy-cyanobiphenyls 37
Figure 2.7: Molecular structure of (a) \(\alpha, \alpha' \)-bis(4-(4-alkylphenyliminomethyl)-phenoxy)alkanes and their analogue; (b)N-(4-n-alkyloxybenzylidines)-4'-n-alkylanilines 38
Figure 2.8: Molecular structure of non-symmetrical liquid crystal dimer \(\alpha \)-(4-cyanobiphenyl-4'-oxy)\(\alpha \)-(4-alkylanilinebenzylidine-4'oxy)alkanes .. 38
Figure 2.9: Molecular structure of liquid crystal dimer in which the chemical nature of the spacer changed.. 39
Figure 2.10: (a) liquid crystal dimers containing alkylene spacers; (b) siloxane spacer ... 39
Figure 2.11: (a) liquid crystal dimers containing alkylene spacer; (b) oxyethylene spacer ... 40
Figure 2.12: Schematic representation of the molecular structure of (a) even membered dimers: a linear shape; (b) odd membered dimers: a bent shaped ... 41
Figure 2.13: Non-symmetrical disc-rod dimer .. 42
Figure 2.14: Molecular structure of triphenylene based discotic oligomeric liquid crystals .. 42
Figure 2.15: Banana shaped –rod shaped dimer .. 43
Figure 2.16: Functionalized banana–calamitic dimer .. 43
Figure 2.17: Dimers obtained from bent core mesogenic units 44
Figure 2.18: Pictorial possibilities of different types of bent core dimers 44
Figure 2.19: First bent core dimers containing siloxane spacer 45
Figure 2.20: Molecular structure of symmetrical liquid crystalline dimers with alkylene spacer ... 45
Figure 2.21: Molecular structure of cyano terminated symmetrical bent core dimer ... 45
Figure 2.22: Bent core dimer composed of alkylene and siloxane spacers 47
Figure 2.23: Laterally connected dimesogens ... 48
Figure 2.24: Bent core dimer contains acetylene as a spacer 49
Chapter 3: Experimental: Materials and methodology

Figure 3.1: Polarising optical microscope and its different parts 113
Figure 3.2: Schematic illustration of DSC Instrument... 114

Chapter 4A: Oligomers: Bent-core liquid crystal (bent core dimers)

Figure 4.a.1: Different possible types of bent core dimers................................. 126
Figure 4.a.2: Molecular structures of bent core dimers .. 128
Figure 4.a.3: DSC thermogram of 1,9-OM ... 131
Figure 4.a.4: Optical textures of 1a 1,9-OM under crossed polarizers 132
Figure 4.a.5: DSC thermogram of 1,9-o-OM .. 132
Figure 4.a.6: Optical textures of 1,9-o-OM under crossed polarizers 133
Figure 4.a.7: DSC thermogram of 1,9-m-OM ... 134
Figure 4.a.8: Optical textures of 1,9-m-OM under crossed polarizers 134
Figure 4.a.9: Phase transition temperature of the compounds 1,9-OM, 1,9-o-OM and 1,9-m-OM in heating and cooling cycle .. 135
Figure 4.a.10: Entropy of the compounds 1,9-OM, 1,9-o-OM and 1,9-m-OM in heating and cooling cycle ... 136
Figure 4.a.11: Enthalpy change during nematic-isotropic transition of the compounds 1,9-OM, 1,9-o-OM and 1,9-m-OM in heating and cooling cycle .. 136
Figure 4.a.12: UV-Visible absorption spectra of dimers 1,9-OM, 1,9-o-OM and 1,9-m-OM in chloroform at $c = 1 \times 10^{-5}$ M ... 137
Figure 4.a.13: UV-Visible absorption spectra of 1,9-OM in CHCl$_3$ ($c = 1 \times 10^{-5}$ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 139
Figure 4.a.14: Molecular structure of trans (E) and cis (Z)-isosomers of the compound .. 140
Figure 4.a.15: UV-Visible absorption spectra of (1,9-o-OM) in CHCl$_3$ ($c = 1 \times 10^{-5}$ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 141
Figure 4.a.16: UV-Visible spectra of 1,9-m-OM in CHCl$_3$ ($c = 1 \times 10^{-3}$M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 141

Chapter 4B: Novel achiral 4-ring unsymmetrical bent core liquid crystals

Figure 4.b.1: 2, 5-bis (p-hydroxyphenyl)-1,3,4-oxadiazole (ODBP) derivatives ... 148
Figure 4.b.2: Molecular structure of the recorcinol derivatives 148
Figure 4.b.3: Molecular structures of the azo compounds of the two series 2a-e and 1a-e ... 149
Figure 4.b.4: Molecular structure, phases and phase transition temperature of some five ring compounds ... 149
Figure 4.b.5: Molecular structure of few four ring unsymmetrical bent-core molecules ... 150
Figure 4.b.6: DSC thermogram of 4-2M-OM and 6-2M-OM recorded in the second heating and second cooling cycle at 5°C min$^{-1}$ 154
Figure 4.b.7: Phase transition temperatures of compounds, n-2M-OM as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 157

Figure 4.b.8: Enthalpy as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 157

Figure 4.b.9: Entropy as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 158

Figure 4.b.10: Nematic range as a function of number of carbon atoms in alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 158

Figure 4.b.11: Microphotographs of the compound 4-2M-OM at different temperature in nematic phase in cooling cycle ... 159

Figure 4.b.12: Microphotographs of compound 6-2M-OM in nematic phase in cooling cycle .. 160

Figure 4.b.13: UV-Visible absorption spectra of 4-2M-OM, 5-2M-OM and 6-2M-OM in chloroform (c = 1x10⁻⁵ M) ... 163

Figure 4.b.14: UV-Visible spectra of 4-2M-OM in different solvent (c = 1x10⁻⁵ M) .. 163

Figure 4.b.15: (a) UV-Visible absorption spectra of 4-2M-OM in chloroform (c = 1x10⁻⁵ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 164

Figure 4.b.15: (b) UV-Visible absorption spectra of 5-2M-OM in chloroform (c = 1x10⁻⁵ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 164

Figure 4.b.15: (c) UV-Visible absorption spectra of 6-2M-OM in chloroform (c = 1x10⁻⁵ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light .. 165

Figure 4.b.16: Molecular structure of trans (E) and cis (Z)-isomers of compound .. 165

Figure 4.b.17: DFT optimized molecular structure of 5-2M-OM using B3LYP hybrid functional and the 6-311G (d, p) basis set .. 168

Figure 4.b.18: Comparison of experimental UV-visible absorption spectrum with simulated spectrum obtained from time dependent DFT 6-311G (d, p) methods in gaseous phase for the compound 5-2M-OM .. 169

Figure 4.b.19: HOMO and LUMO diagrams of compound 5-2M-OM (a and b respectively) .. 169

Chapter 4C: Novel achiral 4-ring unsymmetrical bent core liquid crystals: methyl substitution at lateral position

Figure 4.c.1: Molecular structure and phase transition temperatures of compounds 1, 2 and 3 .. 178

Figure 4.c.2: General molecular structure of the symmetrical compounds of the homologous series .. 178

Figure 4.c.3: DSC thermogram of compound 4-2M-oM-OM and 8-2M-oM-OM at a rate 5 °C min⁻¹ in second heating and second cooling cycle .. 185

Figure 4.c.4: DSC thermogram of compound 4-2M-mM-OM and 8-2M-mM-OM at a rate 5 °C min⁻¹ in second heating and second cooling cycle .. 186
Figure 4.c.5: Phase transition temperatures of compounds, n-2M-oM-OM as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 187
Figure 4.c.6: Phase transition temperatures of compounds, n-2M-mM-OM as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 188
Figure 4.c.7: Enthalpy of compounds, n-2M-oM-OM as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 188
Figure 4.c.8: Enthalpy of compounds, n-2M-mM-OM as a function of number of carbons in the alkyl chain length in second scan at the rate 5 °C min⁻¹ .. 189
Figure 4.c.9: Entropy of compounds, n-2M-oM-OM as a function of number of carbons in the alkyl chain length in first scan at the rate 5 °C min⁻¹ .. 189
Figure 4.c.10: Entropy of compounds, n-2M-mM-OM as a function of number of carbons in the alkyl chain length in first scan at the rate 5 °C min⁻¹ .. 190
Figure 4.c.11: Width of nematic phase range of compounds, n-2M-oM-OM as a function of number of carbons in the alkyl chain length in first scan at the rate 5 °C min⁻¹ .. 190
Figure 4.c.12: Width of nematic phase range of compounds, n-2M-mM-OM as a function of number of carbons in the alkyl chain length in first scan at the rate 5 °C min⁻¹ .. 191
Figure 4.c.13: Microphotographs of compound 4-2M-oM-OM and 8-2M-oM-OM at different temperatures in nematic phase in cooling cycle ... 192
Figure 4.c.14: Microphotographs of compound 4-2M-mM-OM and 8-2M-mM-OM at different temperatures in nematic phase in cooling cycle ... 192
Figure 4.c.15: UV-Visible absorption spectra of compounds n-2M-oM-OM in chloroform at c = 1x10⁻⁵ M ... 194
Figure 4.c.16: UV-Visible spectra of compounds n-2M-mM-OM in chloroform at c = 1x10⁻⁵ M ... 195
Figure 4.c.17: UV-Visible absorption spectra of 4-2M-oM-OM in CHCl₃ (c = 1x10⁻⁵ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light ... 195
Figure 4.c.18: UV-Visible absorption spectra of 4-2M-mM-OM in CHCl₃ (c = 1x10⁻⁵ M) and the changes in the absorption spectrum with respect to exposure time to UV light and in absence of light ... 196
Figure 4.c.19: Molecular structure of trans (E) and cis (Z)-isomers of compound ... 196

Chapter 4D: Copper (II) complexes of achiral four-ring unsymmetrical bent-core liquid crystals

Figure 4.d.1: Molecular structure of monosubstituted and dissubstituted copper salicylaldimine compounds ... 203
Figure 4.d.2: Representative microphotographs of each complex [n-2M-OM]₂Cu ... 210
Figure 4.d.3: (a) DSC thermogram of ligand 8-2M-OM and (b) corresponding copper complex [8-2M-OM]₂Cu at a heating and cooling rate 5 °C min⁻¹ ... 211
Figure 4.d.4: (a) DSC thermogram of ligand 18-2M-OM and (b) the
corresponding copper complex \([18-2M-OM]_2Cu\) at a heating and cooling rate 5 °C min\(^{-1}\).

Figure 4.d.5: Microphotographs of compound 8-2M-OM and \([8-2M-OM]_2Cu\) at different temperatures in nematic phase in cooling cycle.

Figure 4.d.6: Microphotographs of compound 18-2M-OM and \([18-2M-OM]_2Cu\) at different temperatures in nematic phase in cooling cycle.

Figure 4.d.7: Representative microphotographs of each complex \([n-2M-oM-OM]_2Cu\).

Figure 4.d.8: (a) DSC thermogram of ligand 8-2M-oM-OM and (b) corresponding copper complex \([8-2M-oM-OM]_2Cu\) at a heating and cooling rate 5 °C min\(^{-1}\).

Figure 4.d.9: Microphotographs of compound 8-2M-oM-OM and \([8-2M-oM-OM]_2Cu\) at different temperatures in nematic phase in cooling cycle.

Figure 4.d.10: Representative microphotographs of each complex \([n-2M-mM-OM]_2Cu\).

Figure 4.d.11: (a) DSC thermogram of ligand 8-2M-mM-OM and (b) corresponding copper complex \([8-2M-mM-OM]_2Cu\) at a heating and cooling rate 5 °C min\(^{-1}\).

Figure 4.d.12: Microphotographs of compound 8-2M-mM-OM and \([8-2M-mM-OM]_2Cu\) at different temperatures in nematic phase in cooling cycle.

Figure 4.d.13: Phase transition temperatures of compounds, \([n-2M-OM]_2Cu\) as a function of number of methylene units in the alkoxy chain at the rate 5 °C min\(^{-1}\).

Figure 4.d.14: Phase transition temperatures of compounds, \([n-2M-oM-OM]_2Cu\) as a function of number of methylene units in the alkoxy chain at the rate 5 °C min\(^{-1}\).

Figure 4.d.15: Phase transition temperatures of compounds, \([n-2M-mM-OM]_2Cu\) as a function of number of methylene units in the alkoxy chain at the rate of 5 °C min\(^{-1}\).

Figure 4.d.16: UV-Visible absorption spectra of ligand 8-2M-OM, 8-2M-oM-OM, 8-2M-mM-OM and their corresponding copper complexes \([n-2M-OM]_2Cu\), \([n-2M-oM-OM]_2Cu\), \([n-2M-mM-OM]_2Cu\) in chloroform (c = 1x10\(^{-5}\) M).