CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. List of figures</td>
<td>xiv-xv</td>
</tr>
<tr>
<td>B. List of tables</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER-I</td>
<td>1-13</td>
</tr>
<tr>
<td>GENERAL INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Historical background of medicinal plants and traditional system of medicine</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2 Natural products and drug discovery</td>
<td>3-6</td>
</tr>
<tr>
<td>1.3 Computer Aided Drug Design</td>
<td>6-8</td>
</tr>
<tr>
<td>1.4 A brief description about the family Scrophulariaceae</td>
<td>8-9</td>
</tr>
<tr>
<td>1.5 The Plant: Scoparia dulcis L.</td>
<td>9-10</td>
</tr>
<tr>
<td>1.5.1 Botanical description of Scoparia dulcis L.</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2 Taxonomical classification of Scoparia dulcis L.</td>
<td>11</td>
</tr>
<tr>
<td>1.5.3 Ethnomedicinal uses of various parts of Scoparia dulcis L.</td>
<td>11-12</td>
</tr>
<tr>
<td>CHAPTER-II</td>
<td>14-34</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2.1 Phytochemical investigation of Scoparia dulcis L.</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Terpenoids in Scoparia dulcis L.</td>
<td>14-17</td>
</tr>
<tr>
<td>2.1.2 Flavonoids in Scoparia dulcis L.</td>
<td>17-19</td>
</tr>
<tr>
<td>2.1.3 Steroids in Scoparia dulcis L.</td>
<td>20</td>
</tr>
<tr>
<td>2.1.4 Some other compounds present in Scoparia dulcis L.</td>
<td>21-22</td>
</tr>
<tr>
<td>2.2 Potential bioactivity evaluation of Scoparia dulcis L.</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Antacid and antiulcer activity</td>
<td>22-23</td>
</tr>
<tr>
<td>2.2.2 Analgesic, anti-inflammatory and antipyretic activity</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Cytotoxicity activity</td>
<td>23</td>
</tr>
</tbody>
</table>
2.2.4 Antitumor activity 24
2.2.5 Antidiabetic activity 24-26
2.2.6 Antioxidant activity 26-27
2.2.7 Antimicrobial and antifungal activity 27-28
2.2.8 Antiviral activity 28
2.2.9 Antimalarial activity 28-29
2.2.10 Hepatoprotective activity 29
2.2.11 Neurotrophic activity 29
2.2.12 Antihyperlipidemic activity 30
2.2.13 Mutagenic activity 30
2.2.14 Gastro Intestinal activity 30
2.2.15 Other pharmacological activities 31

2.3 Computer Aided Drug Design and Natural Product 32-34

CHAPTER-III

PHYTOCHEMICAL SCREENING 35-61

3.1 Basic concept of phytochemical screening

3.1.1 Plant material 35
3.1.2 Choice of solvents 35-36
3.1.3 Methods of extraction 36-38

3.2 Preliminary phytochemical screening of Scoparia dulcis L.

3.2.1 Collection, drying and grinding of plant material 39
3.2.2 Preparation of plant extracts 39
3.2.3 Protocol for preliminary phytochemical screening 40-41
3.2.4 Results of preliminary phytochemical screening 41-42

3.3 Thin Layer Chromatography (TLC) profiling of crude extracts of Scoparia dulcis L.

3.3.1 Basic concept and principle 43
3.3.2 Methodology 43-44

3.3.3 Results of TLC profiling of crude extracts of *Scoparia dulcis* L. 44-47

3.4 Isolation of bioactive compounds by chromatographic techniques

3.4.1 Basic concept and principle

3.4.1.1 Choosing a Stationary Phase 48

3.4.1.2 Choosing Solvents 48

3.4.1.3 Packing of Column 48-49

3.4.1.4 Loading of Sample 49

3.4.1.5 Monitoring of Column 49

3.4.1.6 Isolating the Separated Compounds 49-50

3.4.2 Methodology 50

3.4.3 Result 50-51

3.5 Structure elucidation of isolated compound by Spectroscopic data analysis.

3.5.1 Basic concept and principle 52

3.5.1.1 Infrared spectroscopy (IR) 52

3.5.1.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 53

3.5.1.3 Mass Spectrometry (MS) 53-54

3.5.2 Methodology 54

3.5.3 Results

3.5.3.1 Analyses of spectroscopic data 55

3.5.3.1.1 FT-IR Spectroscopic analysis 55

3.5.3.1.2 NMR Spectroscopic analyses

3.5.3.1.2.1 1H NMR Spectrum analysis 56

3.5.3.1.2.2 13C NMR Spectrum analysis 57

3.5.3.1.2.3 DEPT-135 Spectrum analysis 58

3.5.3.1.3 GC-MS Spectroscopic analyses 59-60
3.5.3.2 Interpretation of spectroscopic data 60-61
3.5.3.3 Derived structure of the compound 61

FINDINGS 62

CHAPTER-IV
IN SILICO SCREENING OF ISOLATED COMPOUND 63-91

4.1 Basic concept of Computer Aided Drug Design 63-64

4.2 A brief overview about the tools and techniques employed in CADD

4.2.1 Databases 64

4.2.1.1 Protein Data Bank 64-65
4.2.1.2 NCBI PubChem BioAssay 65
4.2.1.3 ChEMBL 65
4.2.1.4 DrugBank 65-66
4.2.1.5 BindingDB 66
4.2.1.6 PDBsum 66

4.2.2 Chemical structure representation 66

4.2.2.1 ACD ChemSketch 66-67
4.2.2.2 OpenBabel 67
4.2.2.3 Perkin Elmer ChemBioOffice 2012 67

4.2.3 Drug likeness screening and Lipinski filter software Molsoft L.L.C 67

4.2.4 ADME/Tox tool Mobyle@RPBS 67-68
4.2.5 Target prediction tool ReverseScreen3D 68
4.2.6 Binding site prediction tool Q-SiteFinder 68-69
4.2.7 Docking 69
4.2.8 QSAR software STATISTICA 12 69-70

4.3 Methodology

4.3.1 Database search 70
4.3.2 Drug likeness screening and Lipinski filter 70
4.3.3 ADME/Tox screening 70
4.3.4 Target selection 71
4.3.5 Active site identification 71
4.3.6 Molecular Docking 71
4.3.7 QSAR study and activity prediction 71-72

4.4 Results

4.4.1 Database search 72
4.4.2 Drug likeness and Lipinski filter screening 72-73
4.4.3 ADME/Tox screening 74-79
4.4.4 Target selection 80
4.4.5 Active site identification 80
4.4.6 Molecular Docking 80-86
4.4.7 QSAR study 86-91

FINDINGS 92-93

CHAPTER-V

GENERAL DISCUSSION 94-100

CHAPTER-VI

SUMMARY AND CONCLUSION 101-102

REFERENCES 103-121

APPENDICES

APPENDIX I: List of Abbreviations A-D
APPENDIX II: Preparation of Reagents E
APPENDIX III: Databases, software and server F
APPENDIX IV. List of publications G-H
APPENDIX V. Herbarium of *Scoparia dulcis* L. I