# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>45</td>
</tr>
<tr>
<td>2.2</td>
<td>64</td>
</tr>
<tr>
<td>3.1</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>71</td>
</tr>
</tbody>
</table>
3.5 Section of the EMD in Cu by the (111) plane. 72
3.6 Section of the TPMD in Cu by the (100) plane. 73
3.7 Section of the TPMD in Cu by the (110) plane. 74
3.8 Section of the TPMD in Cu by the (111) plane. 75
3.9 EMD and its angular momentum components in Cu along the <100> direction. The total EMD is unlabelled and the s, p, and d contributions are labelled. 77
3.10 EMD and its angular momentum components in Cu along the <110> direction. 78
3.11 EMD and its angular momentum components in Cu along the <111> direction. 79
3.12 TPMD and its angular momentum components in Cu along the <100> direction. 80
3.13 TPMD and its angular momentum components in Cu along the <110> direction. 81
3.14 TPMD and its angular momentum components in Cu along the <111> direction. 82
3.15 CP anisotropies in Cu. The continuous curves show the LCGO results of Bagayoko et al [89]. The experimental points are from the work of Pattison et al [64]. 86
3.16 The difference between the theoretical and experimental absolute CPs in Cu, along the <110> direction. The dotted curve indicates the difference without correlation correction. The continuous curve indicates the difference with correlation correction. 89
3.17 ACPAR anisotropies in Cu. The continuous curves show the present LCGO calculation and the solid circles show the experimental work of Cushner et al [117]. 92
3.18 2D ACPAR surface in Cu for the integration along <100> direction (unconvoluted without core). 93
3.19 2D ACPAR surface in Cu for the integration along <110> direction (unconvoluted without core). 94
3.20 2D ACPAR surface in Cu for the integration along <111> direction (unconvoluted without core). 95
3.21 The cross-sections of 2D ACPAR in Cu, (a) along the <100> direction for \( p_{100} = 0 \), (b) along the <110> direction for \( p_{110} = 0 \) and (c) along the <112> direction for \( p_{112} = 0 \). The continuous curves show the present work. The circles represent the experimental results [49] as quoted in [53].

3.22 LCW folded density contour of 2D ACPAR in Cu for the integration along the <100> direction (with 0.2 times core). Projection of the BZ on (100) plane shown by the dashed lines.

3.23 LCW folded density contour of 2D ACPAR in Cu for the integration along the <111> direction (with 0.2 times core). Projection of the BZ on (111) plane shown by the dashed lines.

3.24 The reciprocal form factor along the <100> direction in Cu. The continuous curve shows \( B^p \). The dashed curve indicates \( B^d \).

3.25 The reciprocal form factor along the <110> direction in Cu. The continuous curve indicates \( B^{1p} \). The dashed curve shows \( B^d \).

3.26 The reciprocal form factor along the <111> direction in Cu. The continuous curve indicates \( B^{1p} \), dashed curve indicates \( B^d \).

4.1 Spin-polarised band structure in Ni. The continuous curve indicates majority spin, dashed curve indicates minority spin.

4.2 Spin-polarised band structure in Fe. The continuous curve indicates majority spin, dashed curve indicates minority spin.

4.3 Section of the EMD in Ni by the (100) plane for the majority spin. Dashed lines indicate the section of the BZ in the same plane.

4.4 Section of the EMD in Ni by the (110) plane for the majority spin. Dashed lines indicate the section of the BZ in the same plane.

4.5 Section of the EMD in Ni by the (111) plane for the majority spin. Dashed lines indicate the section of the BZ in the same plane.

4.6 EMD and its angular momentum components in Ni along the <100> direction for the majority spin. The unlabelled curve is the total EMD and the labelled curves are the pure \( s, p \) and \( d \) contributions.
4.7 EMD and its angular momentum components in Ni along the <110> direction for the majority spin.

4.8 EMD and its angular momentum components in Ni along the <111> direction for the majority spin.

4.9 TPMD and its angular momentum components in Ni along the <100> direction for the majority spin.

4.10 TPMD and its angular momentum components in Ni along the <110> direction for the majority spin.

4.11 TPMD and its angular momentum components in Ni along the <111> direction for the majority spin.

4.12 Section of the EMD in Fe by the (100) plane for the majority spin. Dashed lines indicate the section of the BZ in the same plane.

4.13 Section of the EMD in Fe by the (110) plane for the majority spin.

4.14 Section of the EMD in Fe by the (111) plane for the majority spin.

4.15 EMD and its angular momentum components in Fe along the <100> direction, for the majority spin. The unlabelled curve is the total EMD the labelled curves are the pure s, p and d contributions.

4.16 EMD and its angular momentum components in Fe along the <110> direction, for the majority spin.

4.17 EMD and its angular momentum components in Fe along the <111> direction, for the majority spin.

4.18 TPMD and its angular momentum components in Fe along the <100> direction, for the majority spin.

4.19 TPMD and its angular momentum components in Fe along the <110> direction, for the majority spin.

4.20 TPMD and its angular momentum components in Fe along the <111> direction, for the majority spin.

4.21 Section of the spin difference EMD in Ni by the (100) plane.

4.22 Section of the spin difference EMD in Fe by the (100) plane.

4.23 CP anisotropies in Ni. The continuous curve is the present calculation and dotted curve is the experimental work of Rollason et al [87].
4.24 Differences between the theoretical and experimental absolute CPs in Ni. Open circles represent the differences without correlation correction and the filled circles represent the differences after correction. The corrected results are joined by a solid curve to show their trend.

4.25 CP anisotropies in Fe. The continuous curves are the present theoretical results. The open circles are the experimental results of Rollason et al [139].

4.26 Difference between the theoretical and experimental absolute CPs in Fe along the <100>, <110> and <111> directions. The open circles indicate the difference before LP correction and the filled circles indicate the difference after LP correction.

4.27 ACPAR anisotropies in Ni.

4.28 ACPAR anisotropies in Fe.

4.29 MCP along the three symmetry directions. Continuous curve indicates the present calculation in Fe, Dotted curve indicates APW calculation by Wakoh and Kubo[140]. The chain curve indicates present calculation in Ni.

4.30 Spherical average of the MCP in Fe. The continuous curve indicates the present calculation, dashed curve indicates DLM theory [125], dotted curve indicates APW results [140], histogram-experimental results [144]. The chain curve indicates MCP in Ni.

4.31 Magnetic ACPAR in Fe and Ni. The continuous curve indicates the present calculation, dashed curve indicates experimental result for Fe[130].

4.32 2D ACPAR surface in Ni for the integration along the <100> direction (majority spin without core).

4.33 2D ACPAR surface in Ni for the integration along the <110> direction (majority spin without core).

4.34 2D ACPAR surface in Ni for the integration along the <111> direction (majority spin without core).

4.35 LCW folded density contour of 2D ACPAR in Ni for the integration along the <100> direction (majority spin with 0.2 times core).

4.36 LCW folded density contour of 2D ACPAR in Ni for the integration along the <111> direction (majority spin with 0.2 times core).
4.37 2D ACPAR surface in Fe for the integration along the <100> direction (majority spin without core).

4.38 2D ACPAR surface in Fe for the integration along the <110> direction (majority spin without core).

4.39 2D ACPAR surface in Fe for the integration along the <111> direction (majority spin without core).

4.40 LCW folded density contour of 2D ACPAR in Fe for the integration along the <100> direction (majority spin with 0.2 times core).

4.41 LCW folded density contour of 2D ACPAR in Fe for the integration along the <110> direction (majority spin with 0.2 times core).

4.42 Spin difference 2D ACPAR surface in Fe for the integration along the <110> direction.

4.43 Comparison of $B^{cp}$ in Ni along the <110> direction. The continuous curve indicates present result, filled circles indicate experimental result [87].

4.44 Reciprocal form factor in Ni along the <100> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

4.45 Reciprocal form factor in Ni along the <110> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

4.46 Reciprocal form factor in Ni along the <111> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

4.47 Reciprocal form factor in Fe along the <100> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

4.48 Reciprocal form factor in Fe along the <110> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

4.49 Reciprocal form factor in Fe along the <111> direction. The continuous curve indicates $B^{cp}$, dashed curve indicates $B^p$.

5.1 Band structure in paramagnetic Cr.

5.2 Band structure in V.

5.3 Section of the EMD in Cr by the (100) plane. The section of the BZ is shown by the dashed lines.
5.4 Section of the EMD in Cr by the (110) plane. 195
5.5 Section of the EMD in Cr by the (111) plane. 196
5.6 Section of the EMD in V by the (100) plane. 197
5.7 Section of the EMD in V by the (110) plane. 198
5.8 Section of the EMD in V by the (111) plane. 199
5.9 CP anisotropy in Cr. The continuous curve indicates present work, open circles indicate experimental results [165]. 203
5.10 CP anisotropy in V. The continuous curve indicates present work, open circles indicate experimental results [166]. 205
5.11 Difference between the theoretical and experimental absolute CPs in V, along the three directions. Open circles indicate before LP correction and the filled circles indicate after LP correction. 207
5.12 ACPAR anisotropies in Cr. The continuous curve indicates present results and the filled circles show the experimental results [169]. 209
5.13 ACPAR anisotropies in V. The continuous curve indicates present results and the filled circles show the experimental results [170]. 212
5.14 2D ACPAR surface in Cr for the integration along the <100> direction (unconvoluted, without core). 214
5.15 2D ACPAR surface in Cr for the integration along the <110> direction (unconvoluted, without core). 215
5.16 2D ACPAR surface in Cr for the integration along the <111> direction (unconvoluted, without core). 216
5.17 LCW folded density contour of 2D ACPAR in Cr for the integration along the <100> direction (without core). 218
5.18 LCW folded density contour of 2D ACPAR in Cr for the integration along the <110> direction (without core). 219
5.19 2D ACPAR surface in V for the integration along the <100> direction (unconvoluted, without core). 220
5.20 2D ACPAR surface in V for the integration along the <110> direction (unconvoluted, without core). 221
5.21 2D ACPAR surface in V for the integration along the <111> direction (unconvoluted, without core).

5.22 LCW folded density contour of 2D ACPAR in V for the integration along the <100> direction (with 0.2 times core).

5.23 LCW folded density contour of 2D ACPAR in V for the integration along the <110> direction (with 0.2 times core).

5.24 Reciprocal form factor in Cr along the <100> direction. The continuous curve indicates B, dashed curve indicates B'. (Both the curves do not include core contributions). Arrows indicate the lattice vectors and their projections.

5.25 Reciprocal form factor in Cr along the <110> direction. The continuous curve indicates B, dashed curve indicates B'. (Both the curves do not include core contributions). Arrows indicate the lattice vectors and their projections.

5.26 Reciprocal form factor in Cr along the <111> direction. The continuous curve indicates B, dashed curve indicates B'. (Both the curves do not include core contributions). Arrows indicate the lattice vectors and their projections.

5.27 Reciprocal form factor in V along the <100> direction. The continuous curve indicates B, dashed curve indicates B'. Arrows indicate the lattice vectors and their projections.

5.28 Reciprocal form factor in V along the <110> direction. The continuous curve indicates B, dashed curve indicates B'. Arrows indicate the lattice vectors and their projections.

5.29 Reciprocal form factor in V along the <111> direction. The continuous curve indicates B, dashed curve indicates B'. Arrows indicate the lattice vectors and their projections.