LIST OF SYMBOLS AND ABBREVIATIONS

A System matrix
AK Governor amplifier gain
B Control matrix
Cv Effective governor controlled valve gate position
D Damping constant
E Voltage proportional to flux linkage of any machine
\(E_{fd} \) Open circuit excitation voltage
\(E_i \) Internal voltage of the ith machine
\(E_{Qe}, E_{qe} \) Open circuit terminal voltage of any machine
FH.P. Fractions of output from H.P stage of steam turbine
FI.P. Fractions of output from I.P. stage of steam turbine
FL.P. Fractions of output from L.P. stage of steam turbine
H Inertia constant
\(I_i \) Current input of the ith machine
KA Amplifier gain of exciter
KE 1.0 p.u if the output of the amplifier produces 1.0 p.u. output voltage
KF Derivative feedback of exciter
M Moment of inertia
PM Mechanical power
PG Generator power
PGV Speed governor output
\(P_T \) Turbine output
QG Reactive power generation
R Resistance
SR Speed reference
TA Amplifier time constant of exciter
TE Exciter time constant
TF Derivative feedback time constant of exciter
TR Filter time constant
TP Pilot valve time constant of hydro turbine
TG Gate servo motor time constant
Td Dashpot time constant
T_{do} Direct axis field time constant
Tw Water time constant
TRH Reheat time constant
TCO Cross-over time constant
TCH Steam chest time constant
T_s Speed delay time constant
T_3 Valve positioning servo motor time constant
U Control vector
V_i Terminal Voltage of the i-th bus
X State vector
X_{d}, X_d Machine reactance
Y Admittance matrix
Z_i Internal impedance of the ith machine
d Transient droop coefficient for hydro turbine
n Number of machines,
 Order of systems,
 Number of buses.
 r.m.s. Root mean square
t Time
tr Trace of a matrix
t_s Time specified
\delta Load angle of any machine
\epsilon Tolerance limit
\sigma Permanent droop coefficient
\phi_n(t) Walsh function of the nth order
\theta angle of admittance
w Angular velocity
\Delta Incremental operator