LIST OF NOTATIONS

\begin{align*}
A &= \text{Annual soil loss, Area of watershed} \\
\text{AMC} &= \text{Antecedent Moisture Condition} \\
\text{API} &= \text{Antecedent Precipitation Index} \\
a_0, a_1, b_0 &= \text{Coefficients of 3 coefficient runoff model} \\
a_i, b_j &= \text{Constants} \\
a_n, b_m &= \text{Parameters in the general storage equation of Kulandaiswamy} \\
C &= \text{Cropping management factor} \\
\text{CN} &= \text{Curve Number} \\
D &= \text{Differential operator} \\
\text{DR} &= \text{Sediment Delivery Ratio} \\
\text{EI} &= \text{Erosion Index} \\
F &= \text{Water retained during runoff} \\
\text{FCC} &= \text{False Colour Composite} \\
F_V &= \text{Rainfall abstractions} \\
f &= \text{Correction factor} \\
G &= \text{Gradient, slope percent} \\
I_a &= \text{Initial abstraction} \\
I(t) &= \text{Effective rainfall rate} \\
\text{IUH} &= \text{Instantaneous Unit Hydrograph} \\
i, i(t) &= \text{Rainfall excess rates} \\
K &= \text{Soil erodibility factor} \\
K_I &= \text{Interflow constant} \\
K_p &= \text{Primary base flow constant} \\
K_s &= \text{Supplementary base flow constant}
\end{align*}
\[K_0, K_1, K_2 = \text{Coefficients} \]
\[L = \text{Slope length factor, Length of main channel} \]
\[\ell = \text{Average length of first order channels} \]
\[\text{MSL} = \text{Mean Sea Level} \]
\[\text{mb} = \text{Millibars} \]
\[P = \text{Rainfall excess, supporting conservation practice factor} \]
\[P_e = \text{Effective rainfall} \]
\[P_i = \text{Precipitation of the } i^{th} \text{ day} \]
\[Q = \text{Total surface runoff} \]
\[Q_a = \text{Actual runoff} \]
\[Q_c = \text{Computed runoff} \]
\[Q_{cl} = \text{Modified computed runoff} \]
\[Q_I = \text{Interflow} \]
\[Q_{imax} = \text{Maximum interflow after 1 or 2 days of peak} \]
\[Q_{p0}, Q_{p1} = \text{Primary baseflow} \]
\[Q_{sl} = \text{Supplementary baseflow} \]
\[Q_{smax} = \text{Maximum supplementary base flow after 1 or 2 days of peak} \]
\[Q(t) = \text{Observed total runoff} \]
\[Q_{d}(t) = \text{Computed total flow} \]
\[q(t) = \text{Surface runoff} \]
\[q_{d}(t) = \text{Computed surface runoff} \]
\[q_b, q_p(t) = \text{Initial baseflow} \]
R = Correlation coefficient or Multiple correlation coefficient, Rainfall erosion factor
Rev,Re = Rainfall excess volume, Elongation ratio
Rs = Special correlation coefficient
Rs(t) = Rainfall rate
RV = Volume of Rainfall
ra = Average rainfall rate
S = Storage runoff volume, Slope
S(t) = Storage
Sy = Sediment yield
SMI = Soil Moisture Index
T = Duration of Rainfall
TD = Time from the end of rainfall excess to the end of surface runoff
Tg = Duration of rainfall excess
Tg,tg = Time to centre of gravity of the rainfall area
t = Time
tda = Average time delay of the basin
tp = Time to peak
tr = Transition factor
At = Unit period
η = Parameter representing Rev, Tg/T (Xg,T/T)
θ = Parameter representing rainfall characteristics
t = Delay time
\(X_1 = \) Rainfall excess volume
\(X_2 = \frac{T_g}{T_e} \)
\(X_3 = \) Parameter representing Rev, \(\frac{T_g}{T_e} \)
\(X_4 = \) Antecedent Precipitation Index
\(X_5 = \) Ratio of the mean rainfall to the maximum rainfall