PUBLICATIONS FROM THIS DOCTORAL THESIS

 Impact factor = 1.29

 Impact factor = 3.11

 Impact factor = 1.2

 Impact factor = Not yet given

Table 24: Final summary of changes after cyclic meditation and supine rest sessions.

<table>
<thead>
<tr>
<th>Practice</th>
<th>Variables studied</th>
<th>Post</th>
</tr>
</thead>
</table>
| **Cyclic meditation** | Measures of neuro-psychological change | Improved psychomotor performance
↑ Net scores, ↓ wrong scores |
| | Digit-letter substitution task | Improved repetitive motor activity
↑ total scores |
| | Letter copying task | Improved repetitive motor activity
↑ total scores |
| | Circle dotting task | Improved repetitive motor activity
↑ total scores |
| | Wechsler memory scale | Improved memory
↑ memory scores |
| | State anxiety inventory | Reduced anxiety state
↓ anxiety scores |
| Measures of cognitive change | MLAEPs | Cortical inhibition |
| **Supine rest** | Measures of neuro-psychological change | No Improvement in psychomotor performance
↑ wrong scores |
| | Digit-letter substitution task | Improved repetitive motor activity
↑ total scores but magnitude of change was less. |
| | Letter copying task | Improved repetitive motor activity
↑ total scores but magnitude of change was less. |
| | Circle dotting task | Improved repetitive motor activity
↑ total scores but magnitude of change was less. |
| | Wechsler memory scale | Improved memory
↑ memory scores but magnitude of change was less. |
| | State anxiety inventory | Reduced anxiety state
but magnitude of change was less.
↓ anxiety scores |
| Measures of cognitive change | MLAEPs | Mesencephalic and diencephalic inhibition |
| **Control** | Measures of neuro-psychological change | No Improvement in psychomotor performance
↑ wrong scores |
| | Digit-letter substitution task | No Improvement in repetitive motor activity
↓ total scores |
| | Letter copying task | No Improvement in repetitive motor activity
↓ total scores |
| | Circle dotting task | No Improvement in repetitive motor activity
↓ total scores |

Note: ↑: Increase, ↓: Decrease
ABSTRACT

Subramanya Pailoor

Title: A Comparative Study of the Psychophysiological effects of Cyclic Meditation and Supine Rest (Shavasana).

Guides: Dr. H. R. Nagendra and Dr. Shirley Telles

Design: Self as control design (CM & SR)

Source: Students of S-VYASA

The study was intended to compare cyclic meditation (CM) with an equal period of supine rest (SR), with respect to: Attentional tasks: (1) the performance in a psychomotor tasks, included digit-letter substitution task (DLST) which is a measure of attention, as well as two tasks for motor functions (i.e., letter copying task and circle dotting task), (2) components of Wechsler memory scale as well as state anxiety (STAI) to determine if anxiety influenced performance, and (3) Evoked Potentials: Midlatency auditory evoked potentials (MLAEPS) using a Nicolet Bravo, U.S.A., apparatus, to understand whether information processing at different cortical and sub-cortical levels is facilitated or not by CM and SR.

Conclusion: The practice of CM has resulted in prolonged latencies of evoked potentials generated within the cerebral cortex, supporting the idea of cortical inhibition after CM. The present study also showed better performance in a digit-letter substitution task, as well as in tasks for motor speed following the practice of CM. Following a period of supine rest there was improved performance in tasks for motor speed, but not in the digit-letter substitution task. The study also showed that CM practice improves the performance in memory tasks and reduces state anxiety more than a comparable period of SR.