CONTENTS

CHAPTER-I- INTRODUCTION

1.1. General introduction ---1-4

1.2. Importance of stability constants---------------------------------------4-5

1.3. Factors affecting the stability of metal complexes-------------------5-8
 1.3.1. Solvent
 1.3.2. Temperature
 1.3.3. Effect of metal ions
 1.3.4. Influence of ionic strength
 1.3.5. Nature of the ligand
 1.3.6. Steric factor within the complex
 1.3.7. Effect of substituent
 1.3.8. Nature of the donor atom

1.4. Theories of coordination compounds------------------------------------8-10
 1.4.1. Alfred Werner
 1.4.2. Valence bond theory
 1.4.3. Crystal field theory (CFT)
 1.4.4. Molecular orbital theory

1.5. Literature survey---10-11

1.6. Importance of metal ion in biological system--------------------------11-13
 1.6.1. Cobalt
 1.6.2. Nickel
 1.6.3. Copper
 1.6.4. Zinc
1.7. Classification of drugs

1.8. Determination of stability constant of binary complexes
 1.8.1. Bjerrum method
 1.8.2. Kruck and Sarkar method
 1.8.3. Calvin and Wilson method
 1.8.4. Irving and Rossotti method

1.9. Ternary complexes (mixed-ligand complex systems)
 1.9.1. Mechanism of complexation
 1.9.2. Calculation of stability constant of ternary complexes

1.10. Aim of the present work

References

CHAPTER-II-EXPERIMENTAL DETAILS

2.1. pH metry

2.2. Maintenance of pH electrode

2.3. Errors in the use of a glass electrode

2.4. Glass electrode for pH measurements

2.5. Materials and solutions
 2.5.1. Sodium hydroxide (NaOH)
 2.5.2. Perchloric acid (HClO₄)
 2.5.3. Sodium perchlorate (NaClO₄.H₂O)
 2.5.4. Metal ion solutions
 2.5.5. Solvent
 2.5.6. Ligands
2.6. Study of stability constant of binary systems-----------------------------53-57
 2.6.1. Potentiometric procedure of 1:1 binary system of glycine
 2.6.2. Potentiometric procedure of 1:2 binary system of glycine
 2.6.3. Calculation of stability constant of binary complex
2.7. Study of stability constant of ternary systems---------------------------57-63
 2.7.1. Potentiometric titration method for the ternary system
 2.7.2. Calculation of stability constant of ternary complexes using
 computer programme (SCOGS)
 2.7.3. Computational procedure by SCOGS
 2.7.4. Relationships between equilibrium constants of metal ligand
 complexes
 2.7.5. Distribution of complex species with pH
References---64-65

CHAPTER-III-EXPERIMENTAL RESULTS
Section I: Binary complexation--66-73
Section II: Ternary complexation--74-113

CHAPTER-IV- RESULT & DISCUSSION
4.1. Section I: Binary complexation-------------------------------------114-151
 4.1.1. Stability constant of divalent metal ions with glycine
 4.1.2. Stability constant of divalent metal ions with ciprofloxacin.HCl
 4.1.3. Stability constant of divalent metal ions with pantoprazole
 Sodium
 4.1.4. Stability constant of divalent metal ions with gabapentin
 4.1.5. Stability constant of divalent metal ions with chloramphenicol
 4.1.6. Stability constant of divalent metal ions with ceftriaxone sodium
4.1.7. Stability constant of divalent metal ions with atenolol

4.1.8. Strength of complexes

4.1.8.1. Binary complexes of Co (II)

4.1.8.2. Binary complexes of Ni (II)

4.1.8.3. Binary complexes of Cu (II)

4.1.8.4. Binary complexes of Zn (II)

4.2. Section II: Ternary complexation------------------------151-196

4.2.1. The stability constant of ternary complexes

4.2.1.1. Ternary complexes of ciprofloxacin. HCl

4.2.1.2. Ternary complexes of pantoprazole sodium

4.2.1.3. Ternary complexes of gabapentin

4.2.1.4. Ternary complexes of chloramphenicol

4.2.1.5. Ternary complexes of ceftriaxone sodium

4.2.1.6. Ternary complexes of atenolol

4.2.2. Strength of stability constant of ternary complexes

4.2.2.1. Co (II)-glycine-medicinal compounds ternary system

4.2.2.2. Ni (II)-glycine-medicinal compounds ternary system

4.2.2.3. Cu (II)-glycine-medicinal compounds ternary system

4.2.2.4. Zn (II)-glycine-medicinal compounds ternary system

References--197-209