General Remarks

1. All the melting points were determined by open capillary method and are uncorrected.
2. IR spectra of the products were recorded using KBr pellets. The characteristic IR absorptions of the synthesized molecules are recorded on Shimadzu IR Spectrophotometer.
3. Mass spectra were recorded on JEOL-ACuTOF DART (ESI^+ Mode) mass spectrometer.
4. PMR spectra were recorded on Bruker Advance II FT at 400 MHz using TMS as internal standard. Chemical shifts are expressed in δ ppm. DMSO d₆ and CDCl₃ have been used as a media. The PMR spectralscannes obtained in DMSO have the peaks at δ 2.52 and 3.30 for the protons of impurities of DMSO and water in DMSO d₆, respectively. The PMR scannes obtained in CDCl₃ have peaks at δ 7.24 and 1.55 for the protons of impurities CHCl₃, water in CDCl₃ respectively.
5. The ¹³C NMR spectra were recorded on BrukerAvance 400 (400 MHz FT NMR’) and 300 MHz on Jeol respectively. Chemical shifts are expressed in δ ppm. Fully decoupled ¹³C NMR spectra are recorded.
6. Elemental analyses were done on EA1108 (Carlo-Erba) at CDRI, Lucknow.
7. The names assigned to the intermediates and final products of the work are by following Chem Draw software system of IUPAC nomenclature.
8. The hard copies of spectra of the intermediates and new products are available. However the data and xerox of the IR, Mass, ¹H and ¹³C NMR spectra of a representative compound from each series has been interpreted and incorporated in the respective experimental sections.