TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION TO THE ELECTRONIC STRUCTURE OF SOLIDS AND THE LMTO METHOD</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>THE ONE ELECTRON SHROEDINGER EQUATION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>THE ENERGY BAND STRUCTURE</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>BAND STRUCTURE METHODS</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Methods using fixed basis-functions</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Methods using partial waves</td>
<td>3</td>
</tr>
<tr>
<td>1.3.3</td>
<td>The linear methods</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>THE LINEAR MUFFIN-TIN ORBITAL METHOD</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Partial waves for a single Muffin-Tin</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Muffin-Tin Orbitals</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Energy independent Muffin-Tin Orbitals</td>
<td>8</td>
</tr>
<tr>
<td>1.4.4</td>
<td>One centre expansion and structure constants</td>
<td>10</td>
</tr>
<tr>
<td>1.4.5</td>
<td>The LCMTO secular matrix</td>
<td>11</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Matrix elements and parametrisation of $E_I(D)$</td>
<td>13</td>
</tr>
<tr>
<td>1.4.7</td>
<td>The LMTO secular matrix and the potential parameters</td>
<td>14</td>
</tr>
</tbody>
</table>
2 GENERAL INTRODUCTION TO INTERMETALLIC COMPOUNDS 17
2.1 INTERMETALLICS: THE PRESENT STATUS 17
2.2 SURVEY OF EARLIER WORKS ON INTERMETALLIC COMPOUNDS 17
2.3 CONSTITUTIONAL STUDIES 18
2.4 CRYSTALLOGRAPHIC STUDIES 19
2.5 EARLIER THEORETICAL WORKS ON INTERMETALLICS 19
2.5.1 Space-filling principle 20
2.5.2 Symmetry principle 20
2.5.3 Connection principle 21
2.5.4 Valence compounds 21
2.5.5 Electron compounds and Interstitial compounds 22
2.5.6 Laves phase (Size factor) compounds 22
2.6 PROPERTIES AND SOME OF THE APPLICATIONS OF INTERMETALLICS 22
2.6.1 The Mechanical properties 24
2.6.2 Thermoelectric properties 24
2.6.3 Magnetic properties 25
2.6.4 Superconducting properties 25
2.7 STUDY OF INTERMETALLICS FROM RECENT THEORIES 27
2.8 AB₂ COMPOUNDS AND THE RELATED STUDY 27
2.9 STRUCTURAL DETAILS AND SALIENT FEATURES OF THE LAVES PHASE COMPOUNDS 31
2.10 RECENT TRENDS IN THE STUDY OF LAVES PHASE COMPOUNDS 36
2.11 THE PRESENT STUDY 38
3 ELECTRONIC STRUCTURE OF ALKALI AND ALKALINE EARTH COMPOUNDS KNa₂, CaMg₂, SrMg₂, and BaMg₂

3.1 INTRODUCTION

3.2 ELECTRONIC STRUCTURE OF KNa₂

3.3 DETAILS OF THE AMg₂ SYSTEMS

3.3.1 Electronic structure of CaMg₂

3.3.2 Electronic structure of SrMg₂ and BaMg₂

3.4 SUMMARY

4 ELECTRONIC STRUCTURE OF THE RHODIUM COMPOUNDS ARh₂ (A = Ca and Sr)

4.1 INTRODUCTION

4.2 ELECTRONIC STRUCTURE OF CaRh₂

4.3 ELECTRONIC STRUCTURE OF SrRh₂

4.4 SUPERCONDUCTING PROPERTIES OF LAVES PHASE COMPOUNDS

4.5 ELECTRON-PHONON COUPLING CONSTANT FOR METALS

4.6 ESTIMATION OF λ FOR COMPOUNDS

4.7 CALCULATION OF SUPERCONDUCTING TRANSITION TEMPERATURE OF CaRh₂ AND SrRh₂

4.8 SUMMARY

5 ELECTRONIC STRUCTURE AND SUPERCONDUCTIVITY OF THE RHODIUM COMPOUNDS ARh₂ (A = Y and La)

5.1 INTRODUCTION

5.2 ELECTRONIC STRUCTURE OF YRh₂

5.3 ELECTRONIC STRUCTURE OF LaRh₂

5.4 CALCULATION OF SUPERCONDUCTING TRANSITION TEMPERATURE OF YRh₂
5.5 CALCULATION OF T_c FOR 'aRh$_2$ 107
5.6 SUMMARY 109

6 ELECTRONIC STRUCTURE AND SUPERCONDUCTIVITY OF THE TECHNETIUM COMPOUNDS ATc$_2$ (A = Sc, Y and Lu) 112
6.1 INTRODUCTION 112
6.2 ELECTRONIC STRUCTURE OF ScTc$_2$ 114
6.3 ELECTRONIC STRUCTURE OF YTc$_2$ 121
6.4 ELECTRONIC STRUCTURE OF LuTc$_2$ 126
6.5 CALCULATION OF ELECTRON-PHONON COUPLING CONSTANT AND SUPERCONDUCTING TRANSITION TEMPERATURE 131
6.5.1 Evaluation of T_c for ScTc$_2$ 131
6.5.2 Calculation of T_c for YTc$_2$ 132
6.5.3 Calculation of T_c for LuTc$_2$ 132
6.6 SUMMARY 136

7 ELECTRONIC STRUCTURE AND SUPERCONDUCTIVITY OF THE RHENIUM COMPOUNDS ARe$_2$ (A = Sc, Y and Lu) 138
7.1 INTRODUCTION 138
7.2 ELECTRONIC STRUCTURE OF ARe$_2$
 (A = Sc, Y and Lu) COMPOUNDS 140
7.3 CALCULATION OF THE ELECTRON-PHONON COUPLING CONSTANT AND SUPERCONDUCTING TRANSITION TEMPERATURE OF ARe$_2$
 (A = Sc, Y and Lu) COMPOUNDS 149
7.4 SUMMARY 157

8 CONCLUSION 161
APPENDIX

A1 INTRODUCTION 166
A2 APW THEORY 166
A3 APW FUNCTION 167
A4 VARIATIONAL EXPRESSION FOR ENERGY 169
A5 APW MATRIX ELEMENTS 171
A6 POTENTIAL CONSTRUCTION FOR YTTRIUM 172
A7 ELECTRONIC STRUCTURE OF YTTRIUM 173
A8 CALCULATION OF SUPERCONDUCTING
TRANSITION TEMPERATURE 176
A9 RESULTS AND DISCUSSION 178
A10 THE ELECTRONIC STRUCTURE AND
SUPERCONDUCTIVITY OF TELLURIUM AT
HIGH PRESSURE 178
A11 ELECTRONIC STRUCTURE OF TELLURIUM 179
A12 RESULTS AND DISCUSSION 179

LIST OF REFERENCES 184