LIST OF FIGURES

Figure 1.1 (a. to f.) Various feeding devices used in pneumatic conveying system.
Figure 1.2 (a. to d.) Feeding devices used by different investigators
Figure 2.1 Feed hopper and nozzle
Figure 2.2 Circular pipe feeder
Figure 2.3 Feeder with side hopper
Figure 2.4 Primary and Secondary nozzles
Figure 3.1 Schematic layout of experimental set-up (without fluidization)
Figure 3.2 Arrangement of Primary and Secondary nozzles
Figure 3.3 Photograph showing the experimental set-up
Figure 3.4 Arrangement of primary nozzle and straight tube
Figure 3.5 Arrangement of primary and secondary nozzle (convergent-divergent)
Figure 3.6 Photograph showing the box type Injector feeder
Figure 3.7 Photograph showing the different arrangements of primary and secondary nozzles
Figure 3.8 Schematic layout of experimental set-up (with fluidization)
Figure 4.1 Variation of \dot{m}_p versus S for different L_i
Figure 4.2 Effect of \dot{m}_p versus S
Figure 4.3 Variation of \dot{m}_p versus S for different L_m
Figure 4.4 Relation between \dot{m}_p/\dot{m}_a versus L_m/d_m and pressure recovery versus L_m/d_m for $S = 13.0$ mm
Figure 4.5 Variation of \dot{m}_p versus S for different d_m; $L_m = 150.0$ mm
Figure 4.6 Variation of \dot{m}_p versus S for different d_m; $L_m = 180.0$ mm
Figure 4.7 Variation of \dot{m}_p versus S for different L_o; $L_i = 55.0$ mm and $L_m = 150.0$ mm
Figure 4.8 Variation of \dot{m}_p versus S for different L_o;
$L_i = 55.0$ mm and $L_m = 180.0$ mm
Figure 4.9 Variation of \dot{m}_p versus S for different L_o;
$L_i = 73.4$ mm and $L_m = 150.0$ mm
Figure 4.10 Variation of \dot{m}_p versus S for different d_p;
$L_m = 150.0$ mm
Figure 4.11 Variation of \dot{m}_p versus S for different d_p;
$L_m = 180.0$ mm
Figure 4.12 Variation of \dot{m}_p versus S for different \dot{m}_a;
$L_m = 150.0$ mm
Figure 4.13 Variation of \dot{m}_p versus S for different \dot{m}_a;
$L_m = 180.0$ mm
Figure 4.14 Static pressure distribution for different S;
$S = 0.0, 8.0$ and 18.0 mm
$L_m = 150.0$ mm; $d_m = 19.0$ mm
Figure 4.15 Static pressure distribution for different S;
$S = 0.0, 8.0$ and 18.0 mm; $L_m = 180.0$ mm;
$d_m = 19.0$ mm
Figure 4.16 Static pressure distribution for different S;
$S = 0.0, 8.0$ and 18.0 mm; $L_i = 51.0$ mm; $L_m = 150.0$ mm
$L_o = 82.3$ mm; $d_m = 22.5$ mm
Figure 4.17 Static pressure distribution for different S;
$S = 0.0, 8.0$ and 18.0 mm; $L_i = 51.0$ mm; $L_m = 180.0$ mm;
$L_o = 82.3$ mm; $d_m = 22.5$ mm
Figure 4.18 Relation between \dot{m}_p versus S for different L_m for rai
Figure 4.19 Relation between \dot{m}_p versus S for different d_p
for rai; $L_m = 150.0$ mm
Figure 4.20 Relation between \dot{m}_p versus S for different d_p
for rai; $L_m = 180.0$ mm
Figure 4.21 Variation of \dot{m}_p/\dot{m}_a versus S for different \dot{m}_a for rai; $L_m = 150.0$ mm; $d_p = 10.0$ mm.
Figure 4.22 Variation of \dot{m}_p/\dot{m}_a versus S for different \dot{m}_a for rai; $L_m = 180.0$ mm; $d_p = 10.0$ mm.
Figure 4.23 Variation of \dot{m}_p / \dot{m}_a versus S for different \dot{m}_a for ragi; $L_m = 150.0$ mm; $d_p = 8.3$ mm

Figure 4.24 Variation of \dot{m}_p versus S for wheat and ragi for different \dot{m}_a

Figure 4.25 Variation of \dot{m}_p versus S for convergent-divergent secondary nozzle

Figure 4.26 Variation of \dot{m}_p versus S for straight tube

Figure 4.27 Variation of \dot{m}_p versus S for different \dot{m}_{aux}; $L_m = 150.0$ mm; $d_p = 10.0$ mm; $d_m = 19.0$ mm

Figure 4.28 Variation of \dot{m}_p versus S for different \dot{m}_{aux}; $L_m = 180.0$ mm; $d_p = 10.0$ mm; $d_m = 19.0$ mm

Figure 4.29 Variation of \dot{m}_p versus S for different \dot{m}_{aux}; $L_m = 180.0$ mm; $d_p = 8.3$ mm; $d_m = 19.0$ mm

Figure 4.30 Variation of \dot{m}_p versus S for different \dot{m}_{aux}; $L_m = 150.0$ mm; $d_p = 14.0$ mm; $d_m = 19.0$ mm

Figure 4.31 Variation of \dot{m}_p versus S for different \dot{m}_{aux}; $L_i = 51.0$ mm; $L_m = 180.0$ mm; $L_G = 82.3$ mm; $d_p = 10.0$ mm; $d_m = 22.5$ mm

Figure 4.32 Static pressure distribution for $S = 13.0$ mm; $L_m = 150.0$ mm; $d_m = 19.0$ mm with and without fluidization for different \dot{m}_{aux}

Figure 4.33 Static pressure distribution for $S = 13.0$ mm; $L_m = 180.0$ mm; $d_m = 19.0$ mm with and without fluidization for different \dot{m}_{aux}

Figure 4.34 Static pressure distribution for $S = 13.0$ mm; $L_i = 51.0$ mm; $L_m = 180.0$ mm; $L_G = 82.3$ mm; $d_m = 22.5$ mm with and without fluidization for different \dot{m}_{aux}