APPENDIX 1

1. ENERGY EQUATIONS FOR HOT MOTORING

\[\dot{U} = -P \dot{V} + \sum Q_j - \dot{M}_B L_B - \dot{M}_W L_W \]
\[U = f(T, M_B, M_W) \]

Differentiating equation (A1.2), with respect to crank angle \(\theta \)

\[\dot{U} = \frac{\partial U}{\partial T} \dot{T} + \frac{\partial U}{\partial M_B} \dot{M}_B + \frac{\partial U}{\partial M_W} \dot{M}_W \]

\[\therefore \dot{T} = \frac{\dot{U} - \frac{\partial U}{\partial M_B} \dot{M}_B - \frac{\partial U}{\partial M_W} \dot{M}_W}{\frac{\partial U}{\partial T}} \]

Products of complete combustion per kg of fuels are evaluated as below:

\[U_A = \sum_j C V_j, \text{ where } j \text{ represents the individual constituents such as } O_2, N_2, C_2H_5OH \& H_2O \]

\[\therefore U = U_A \cdot T \text{ and } \frac{\partial U}{\partial T} = U_A + T \frac{\partial U_A}{\partial T} \]

Hence,

\[\dot{T} = \frac{-P \dot{V} + \sum Q_j - \dot{M}_B L_B - \dot{M}_W L_W - \frac{\partial U}{\partial M_B} \dot{M}_B - \frac{\partial U}{\partial M_W} \dot{M}_W}{U_A + T \frac{\partial U_A}{\partial T}} \]

2. ENERGY EQUATION FOR FIRING RUN

Products of complete combustion per kg of fuels are evaluated as below:
Ethanol

\[C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \]

\[1 \text{ kg} + 2.087 \text{ kg} \quad \text{of (ethanol)} \]
\[1.913 \text{ kg} \quad \text{of (Oxygen)} \]
\[1.174 \text{ kg} \quad \text{of (H}_2\text{O)} \]

Diesel

\[C_{12}H_{26} + 18.5 O_2 \rightarrow 12 CO_2 + 13 H_2O \]

\[1 \text{ kg} + 3.482 \text{ kg} \quad \text{of (Diesel)} \]
\[3.106 \text{ kg} \quad \text{of (CO}_2) \]
\[1.376 \text{ kg} \quad \text{of (H}_2\text{O)} \]

Energy equation can be written as:

\[\dot{U} = -P\dot{V} - \sum \dot{Q}_j + \dot{Q}_D + \dot{Q}_B - \dot{D}.L_D \]
(A1.7)

\[U = f(T, W_E, W_D) \]
(A1.8)

Differentiating equation (A1.8) with respect to crank angle \(\theta \),

\[\dot{U} = \frac{\partial U}{\partial T} \dot{T} + \frac{\partial U}{\partial W_E} \dot{W}_E + \frac{\partial U}{\partial W_D} \dot{W}_D \]
(A1.9)

\[\dot{T} = \frac{-P\dot{V} + \dot{Q}_E + \dot{Q}_D - \sum \dot{Q}_j - \dot{D}.L_D - \frac{\partial U}{\partial W_E} \dot{W}_E - \frac{\partial U}{\partial W_D} \dot{W}_D}{\frac{\partial U}{\partial T}} \]
(A1.10)

Let \(U = U_A \cdot T \)

Where \(U_A = \Sigma m_j C_{V,j} \), where \(j \) represents the individual constituents such as \(C_2H_5OH, C_{12}H_{26}, CO_2, H_2O, O_2 \) and \(N_2 \)

\[\frac{\partial U}{\partial T} = U_A \cdot T + \frac{\partial U_A}{\partial T} \]
Let suffix 3 represent CO₂
4 represent H₂O
5 represent O₂
and 6 represent N₂

Now U_A can be represented as

\[U_A = (W_{TB} - W_B) CV_B + (M_D - W_D) CV_D + (W_B D_3 + W_D D_3) CV_3 + \]
\[(W_E E_4 + W_D D_4) CV_4 + (W_{T5} - W_E E_5 - W_D D_5) CV_5 + W_{T6} CV_6 \ldots (Al.11) \]

From equation (Al.11), the values of \(\frac{\delta U_A}{\delta T} \), \(\frac{\delta U_A}{\delta W_B} \), and \(\frac{\delta U_A}{\delta W_D} \) can be computed.

3. DETERMINATION OF CHARACTERISTIC GAS CONSTANT \('R' \)

\[R = \frac{R_o}{\text{molecular weight}} \]

\[\text{Mol. wt.} = \frac{\text{Total weight of the constituents}}{\text{Number of moles of the constituents}} \]

\[\text{Number of moles} = \frac{\text{Weight of each constituent}}{\text{Molecular weight}} \]

\[\therefore \text{Mol. wt.} = \frac{(W_{TB} - W_B) + (W_{TD} - W_D) + \ldots}{W_{TB} - W_B + W_{TD} - W_D + \ldots} \]

4. CALCULATION OF \(\dot{V} \)

\[V(\theta) = V_{TDC} + \frac{\pi}{4} B^2 \cdot x(\theta) \]

where \(x(\theta) = r(1 + 1/r - \cos \theta - \sqrt{(1/r)^2 - \sin^2 \theta}) \)

\[\dot{V} = \frac{\pi}{4} B^2 \cdot \frac{dx}{d\theta} \]

where

\[\frac{dx}{d\theta} = r(\sin \theta + \frac{\sin \theta \cos \theta}{\sqrt{(1/r)^2 - \sin^2 \theta}}) \]