CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Introduction
1.2 Brief Background
1.3 Rationale and motivation of the research
1.4 Research objectives and approach

CHAPTER 2 LITERATURE SURVEY
2.1 Introduction
2.2 Brief History of Work
2.2.1 Hard Turning
2.2.2 Minimum Quantity Lubrication (MQL) Turning
2.2.3 Flooded Turning
2.2.4 Genetic Algorithm

CHAPTER 3 DRY HARD TURNING
3.1 Introduction
3.2 Recent trends in manufacturing by machining
3.3 Experimental work
CHAPTER 3

3.4 Experimental set up
3.5 Mathematical models
3.6 Central Composite Design
3.7 Mathematical model by RSM
3.8 Finding the limits of process variables
3.9 Development of design matrix
3.10 Results and discussion

3.10.1 Surface roughness
3.10.2 Tool wear

3.11 Optimization by Genetic Algorithm

3.11.1 Why Genetic Algorithm?
3.11.2 Steps in Genetic Algorithm Optimization
3.11.3 Genetic Algorithm parameters
3.11.4 Objective function for Surface roughness and tool wear using Genetic Algorithm

3.12 Conclusion

CHAPTER 4

MINIMUM QUANTITY LUBRICATION (MQL) TURNING

4.1 Introduction
4.2 Types of MQL systems
4.3 Experimental Investigation

4.3.1 Development of set up for MQL application

4.4 Experimental design and methodology

4.4.1 Experimental set up

4.5 Experimental conditions
4.6 Objective function for surface roughness using genetic algorithm

4.7 Result and discussion

4.7.1 Surface roughness

4.8 Readings for tool wear

4.9 Results and Discussion
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>1</td>
<td>Tool wear</td>
<td>94</td>
</tr>
<tr>
<td>4.10</td>
<td></td>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>4.11</td>
<td></td>
<td>Validation by Teaching Learning Based Optimization (TLBO)</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Teacher Phase</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Learner Phase</td>
<td>99</td>
</tr>
<tr>
<td>4.12</td>
<td></td>
<td>TLBO for surface roughness in hard turning with MQL</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Teacher Phase</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Learner Phase</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Conclusion</td>
<td>102</td>
</tr>
<tr>
<td>4.13</td>
<td></td>
<td>TLBO for Tool wear in hard turning with MQL</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Teacher Phase</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Learner Phase</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Conclusion</td>
<td>105</td>
</tr>
</tbody>
</table>

CHAPTER 5

FLOODED TURNING

- Introduction 107
- Comparison of dry, MQL and flooded lubrication 108
- Comparison of results 110
- Conclusion 111

CHAPTER 6

CONCLUSION AND FUTURE SCOPE 112-118

- Introduction 113
- Conclusions 114
- Future scope 117

References and Bibliography
Appendix
Publications