List of Figures

1.1 Multispectral (MS) images with spatial resolution of $2.4m \times 2.4m$ corresponding to the area of Sundarban, India captured using Quickbird satellite: (a) blue (band-1, 0.45−0.52 µm), (b) green (band-2, 0.52−0.60 µm), (c) red (band-3, 0.63−0.69 µm) and (d) near-IR (band-4, 0.76−0.90 µm).

1.2 Color composition of MS image: (a) Natural color composition (NCC) and (b) false color composition (FCC).

1.3 Panchromatic (Pan) image with spatial resolution of $0.6m \times 0.6m$ corresponding to the same geographical area as shown in Fig. 1.1 acquired using Quickbird satellite. The spectral range of Pan sensor is 0.45−0.90 µm.

1.4 Schematic representation of inverse problem. The forward model is a mathematical description of the image degradation process. The inverse problem addresses the issue of reconstructing the original digital image corresponding to the real world scene.

3.1 Block diagram of the proposed approach.

3.2 Example of DoGs. (a) Input test image, (b) Gaussian blurred image with standard deviation of $\sigma_1 = 4$, (c) Gaussian blurred image with standard deviation of $\sigma_2 = 2$ and (d) DoGs of (b) and (c), shown as inverted pixel intensity values.

3.3 Block schematic of the proposed approach for k^{th} MS image. Here, g_k is a gain constant.

3.4 Downsampled LR MS images. The LR test MS images of size 64×64 obtained using (a) Ikonos-2 satellite shown with the color composition of 4, 3 and 2 bands, (b) Quickbird satellite shown with the color composition of 3, 2 and 1 bands and (c) Worldview-2 satellite shown with the color composition of 5, 3 and 2 bands.

3.5 Results of multi-resolution image fusion on the degraded dataset of Ikonos-2 satellite shown with the color composition of 4, 3 and 2 bands. Fusion results of size 256×256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original MS image of size 256×256. The magnified region of a small squared area shown in (e) is displayed at top right corner.
3.6 Results of multi-resolution image fusion on the un-degraded dataset of Ikonos-2 satellite shown with the color composition of 4, 3 and 2 bands. Fusion results of size 1024 × 1024 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original Pan image of size 1024 × 1024. The magnified region of a small squared area shown in (e) is displayed at top right corner. .. 56

3.7 Results of multi-resolution image fusion on the degraded dataset of Quickbird satellite shown with the color composition of 3, 2 and 1 bands. Fusion results of size 256 × 256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original MS image of size 256 × 256. The magnified region of a small squared area shown in (e) is displayed at bottom left corner. .. 59

3.8 Results of multi-resolution image fusion on the un-degraded dataset of Quickbird satellite shown with the color composition of 3, 2 and 1 bands. Fusion results of size 1024 × 1024 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original Pan image of size 1024 × 1024. The magnified region of a small squared area shown in (e) is displayed at bottom left corner. .. 60

3.9 Results of multi-resolution image fusion on the degraded dataset of Worldview-2 satellite shown with the color composition of 5, 3 and 2 bands. Fusion results of size 256 × 256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original MS image of size 256 × 256. The magnified region of a small squared area shown in (e) is displayed at bottom right corner. .. 62

3.10 Results of multi-resolution image fusion on un-degraded dataset of Worldview-2 satellite shown with the color composition of 5, 3 and 2 bands. Fusion results of size 1024 × 1024 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original Pan image of size 1024 × 1024. The magnified region of a small squared area shown in (e) is displayed at bottom right corner. .. 63

4.1 Block schematic of the multi-resolution fusion process for fusing an \(m^{th}\) MS and the Pan image. Here LR and HR correspond to low resolution and high resolution, respectively. The process is repeated for each of the MS image to obtain fused image separately for each of the LR observations. .. 70

4.2 Learning the initial approximation to final fused image (initial estimate) using contourlet transform. (a) Two level contourlet decomposition of an MS image, (b) four level contourlet decomposition of initial estimate. Here shaded area sub-bands coefficients are to be learned from contourlet decomposition of the Pan image and (c) four level contourlet decomposition of the Pan image. .. 71
4.3 Experimental results to show the effect of decimation matrix with equal and unequal weights \((q = 4)\). The first and second row consist fusion results for images captured using Worldview-2 (band-7) and Ikonos-2 (band-3) satellite sensors, respectively. (a) The downsampled LR MS image. The size of LR MS image is \(64 \times 64\). Fused MS images of size \(256 \times 256\) with (b) equal weights and (c) unequal weights. The zoomed-in version of small area shown with white color border in (c) are displayed at bottom right corner in (b, c). 85

4.4 Effect of \(\gamma_1\) on fusion result obtained for degraded Quickbird (band-1) satellite image. (a-c) Fused images with manually selected value of \(\gamma_1\), fused MS images with estimated \(\gamma_1\) (d) without using Canny edge detector and (e) with Canny edge detector. 88

4.5 LR test MS images obtained by downsampling the original MS images captured using different satellite sensors. The size of each LR test MS image is \(64 \times 64\). The downsampled MS images for (a, b) Ikonos-2 satellite with color composition of bands-3, 2, 1 and bands-4, 3, 2 respectively, (c, d, e) Quickbird satellite with color composition of bands-3, 2, 1 and bands-4, 3, 2 corresponding to area around Boulder city, USA and bands-3, 2, 1 corresponding to Sundarban, India respectively and (d, e) Worldview-2 satellite with color composition of bands-5, 3, 2 and bands-7, 5, 3, respectively. 88

4.6 MS fusion results for downsampled Ikonos-2 satellite images consisting of non-urban area shown as color composite of bands-3, 2 and 1 \((q = 4)\). Fused images obtained using (a) temporal Fourier transform (TFT) based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom right corner of all the images. 89

4.7 MS fusion results for degraded dataset of urban area images captured using Ikonos-2 satellite shown as color composite of bands-4, 3 and 2 \((q = 4)\). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom right corner of all the images. 93

4.8 MS fusion results for degraded dataset of forest area captured using Quickbird satellite shown as color composite of bands-3, 2 and 1 \((q = 4)\). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the top right corner of all the images. 95
4.9 MS fusion results for downsampled Quickbird satellite images consisting of semi-urban area shown as color composite of bands-4, 3 and 2 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. 98

4.10 MS fusion results for degraded dataset of semi-urban area of Sundarban, India captured using Quickbird satellite shown as color composite of bands-3, 2 and 1 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. 100

4.11 MS fusion results for degraded dataset of urban area image captured using Worldview-2 satellite shown as color composite of bands-5, 3 and 2 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the top right corner of all the images. 101

4.12 MS fusion results for degraded dataset of semi-urban area images captured using Worldview-2 satellite shown as color composite of bands-7, 5 and 3 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom right corner of all the images. 104

4.13 Un-degraded (original) MS images captured using different satellite sensors. The size of each MS image is 256×256. The MS images for (a) Ikonos-2 satellite with color composition of bands-3, 2, 1, (b) Quickbird satellite with color composition of bands-3, 2, 1 and (c) Worldview-2 satellite with color composition of bands-7, 5, 3. 107

4.14 MS fusion results for un-degraded dataset consisting of semi-urban area captured using Ikonos-2 satellite shown as color composite of bands-3, 2 and 1 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [86], (c) approach in [103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22], (g) Wavelet based initial estimate, (h) proposed approach using CT and (i) proposed approach using NSCT. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. 108
4.15 MS fusion results for un-degraded dataset consisting of urban area captured using Quickbird satellite shown as color composite of bands-3, 2 and 1 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [86], (c) approach in [103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22], (g) Wavelet based initial estimate, (h) proposed approach using CT and (i) proposed approach using NSCT. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. 109

4.16 MS fusion results for un-degraded dataset consisting of urban area captured using Worldview-2 satellite shown as color composite of bands-7, 5 and 3 ($q = 4$). Fused images obtained using (a) TFT based approach [175], (b) approach in [86], (c) approach in [103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22], (g) Wavelet based initial estimate, (h) proposed approach using CT and (i) proposed approach using NSCT. The magnified image for a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. 110

5.1 Block schematic of the proposed pan-sharpening method for fusing an m^{th} MS and the Pan images. Here LR and HR correspond to low resolution and high resolution, respectively. 118

5.2 The statistics for number of matched LR-HR patch pairs using the images of different satellites for $q = 2$ and 4. 119

5.3 Patch recurrence for LR MS image into its coarser resolution image. (a) LR MS image, I_0 and (b) coarser resolution of (a), I_{-1}. Here, patches shown with green border are the matched LR patch pairs and corresponding to these matched pairs HR patches are shown with blue border in (a). 122

5.4 (a) CS framework to obtain the spare coefficient vector v for unmatched LR patch. (b) The corresponding HR patch estimated using dictionary of HR patches (D_{HR}) and the spare vector v in (a). Here the CS framework is depicted for $q = 2$. 123

5.5 Illustration of Gabor prior. The outputs of Gabor filter bank when input is the i^{th} patch of (a) Pan image and (b) unknown pan-sharpened image. 127

5.6 Results of pan-sharpening on degraded dataset of Ikonos-2 satellite consisting of urban area shown as color composite of bands-4, 3 and 2 ($q = 4$). (a) LR MS image of the size 64 x 64 upsampled to the size of Pan image. (b) Pan image of size 256 x 256. Pan-sharpened images obtained using (c) fast IHS (FIHS) approach [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. (j) Original MS image. The magnified image of a small square region with a green border shown in (j) is displayed at the bottom left corner of all the images. 130
5.7 Results of pan-sharpening on un-degraded (original) dataset of Ikonos-2 satellite consisting of urban area shown as color composite of bands-4, 3 and 2 ($q = 4$). (a) Original MS image of size 256×256 upsampled to the size of Pan image. (b) Original Pan image of size 1024×1024. Pan-sharpened images obtained using (c) FIHS [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. The magnified image of a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. .. 132

5.8 Results of pan-sharpening on degraded dataset of Quickbird satellite consisting of semi-urban area shown as color composite of bands-3, 2 and 1 ($q = 4$). (a) LR MS image of size 64×64 upsampled to the size of Pan image. (b) Pan image of size 256×256. Pan-sharpened images obtained using (c) FIHS approach [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. (j) Original MS image. The magnified region of a small square region shown with a green border in (j) is displayed at the bottom left corner of all the images. .. 134

5.9 Results of pan-sharpening on un-degraded dataset of Quickbird satellite consisting of semi-urban area shown as color composite of bands-3, 2 and 1 ($q = 4$). (a) Original MS image of size 256×256 upsampled to the size of Pan image. (b) Original Pan image of size 1024×1024. Pan-sharpened images obtained using (c) FIHS [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. The magnified image of a small square region with a green border shown in (i) is displayed at the bottom left corner of all the images. .. 137

5.10 Results of pan-sharpening on degraded dataset of Worldview-2 satellite consisting of urban area shown as color composite of bands-7, 5 and 3 ($q = 4$). (a) LR MS image of size 64×64 upsampled to the size of Pan image. (b) Pan image of size 256×256. Pan-sharpened images obtained using (c) FIHS approach [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. (j) Original MS image. The magnified region of a small square region shown with a green border in (j) is displayed at the bottom left corner of all the images. .. 139

5.11 Results of pan-sharpening on un-degraded dataset of Worldview-2 satellite consisting of urban area shown as color composite of bands-7, 5 and 3 ($q = 4$). (a) Original MS image of size 256×256 upsampled to the size of Pan image. (b) Original Pan image of size 1024×1024. Pan-sharpened images obtained using (c) FIHS [33], (d) AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i) proposed approach. The magnified image of a small square region with a green border shown in (i) is displayed at the bottom right corner of all the images. .. 140
5.12 Results of pan-sharpening on degraded dataset of Quickbird satellite consisting of semi-urban area shown as color composite of bands-3, 2 and 1 \((q = 4)\). (a) LR MS image of size 64 \times 64 upsampled to the size of Pan image. (b) Pan image of size 256 \times 256. Fusion results obtained using (c) MGF, (d) DoGs, (e) model based approach using NSCT and (f) model based approach using the concept of self-similarity and Gabor prior. The magnified region of a small square region shown with a green border in (f) is displayed at the bottom left corner of all the images. 143

5.13 Results of pan-sharpening on un-degraded dataset of Quickbird satellite consisting of semi-urban area shown as color composite of bands-3, 2 and 1 \((q = 4)\). (a) LR MS image of size 256 \times 256 upsampled to the size of Pan image. (b) Pan image of size 1024 \times 1024. Fusion results obtained using (c) MGF, (d) DoGs, (e) model based approach using NSCT and (f) model based approach using the concept of self-similarity and Gabor prior. The magnified region of a small square region shown with a green border in (f) is displayed at the bottom left corner of all the images. 145