CONTENTS

ACKNOWLEDGEMENTS iv
PREFACE vi
LIST OF PUBLICATION xi

Chapter 1: Solid State Ionics: An Overview

1.1 Introduction 1

1.2 Solid State Ionic Materials: Broad Classification and Ion Transport Phenomenon 3

1.2.1 Crystalline / polycrystalline solid electrolyte phase 4

1.2.2 Glassy / amorphous solid electrolyte phase 23

1.2.3 Composite solid electrolyte phase 34

1.2.4 Polymer electrolyte phase 50

1.3 Application of Solid State Ionic Materials 60

1.4 The Relevance and Scope of the Present Work 70

Chapter 2: Materials Synthesis and Characterization Techniques

2.1 Introduction 73

2.2 Materials Synthesis 73

2.2.1 Ag^+ ion conducting quaternary polycrystalline solid electrolytes 74

2.2.2 Ag^+ ion conducting electroactive Solid Polymer Electrolyte (SPE) and Nano Composite Polymer Electrolyte (NCPE) membranes 75

2.3 Materials Characterization Techniques 76

2.3.1 X-Ray Diffraction (XRD) 76

2.3.2 Scanning Electron Microscopy (SEM) 78

2.3.3 Differential Thermal Analysis (DTA)/ Differential Scanning Calorimetry (DSC) 78
2.4 Ion Transport Property Characterization Techniques
2.4.1 Ionic Conductivity (\(\sigma\)) by ac Impedance Spectroscopy (IS)

2.4.2 Ionic Mobility (\(\mu\)) and ionic transference number (\(t_{\text{ion}}\)) by d.c. polarization method; evaluation of mobile ion concentration (\(n\)) and ionic drift velocity (\(v_{d}\))

2.5 Fabrication of All-Solid-State-Battery

Chapter 3: Ion Transport Property Studies on New Ag\(^+\) Ion Conducting Quaternary Solid Electrolyte Systems: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{RbI}\)

3.1 Introduction

3.2 Results and Discussion
3.2.1 Compositional dependent studies on some basic ionic parameters of quaternary solid electrolytes: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{RbI}\)

3.2.2 Phase identification and materials characterization studies

3.2.3 Temperature dependent studies on ionic parameters: \(\sigma, \mu, n, t_{\text{ion}}, v_{d}\) of quaternary solid electrolyte systems: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{RbI}\)

3.3 Conclusion

Chapter 4: Ion Transport Property Studies on New Ag\(^+\) Ion Conducting Quaternary Solid Electrolyte Systems: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{KI}\)

4.1 Introduction

4.2 Results and Discussion
4.2.1 Compositional dependent studies on some basic ionic parameters of quaternary solid electrolytes: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{KI}\)

4.2.2 Phase identification and materials characterization studies

4.2.3 Temperature dependent studies on ionic parameters: \(\sigma, \mu, n, t_{\text{ion}}, v_{d}\) of quaternary solid electrolyte systems: \(x\ [0.75\text{AgI}:0.25\text{AgCl}]: (1-x) \text{KI}\)

4.3 Conclusion
Chapter 5: Ion Transport Property Studies of New Ag⁺ Ion Conducting Solid Polymer Electrolyte (SPE) Membranes: (1-x) PEO : x [0.7 (0.75AgI: 0.25AgCl) : 0.3 Mİ \(M = Rb, K \)] and Nano-Composite Polymer Electrolyte (NCPE) Membranes: (1-x) [90 PEO : 10 AgNO₃] : x SiO₂

5.1 Introduction 127

5.2 Results and Discussion 128
 5.2.1 Compositional dependent studies on basic ionic parameters and characterization of ion transport properties 128
 5.2.2 Temperature dependent studies on basic ionic parameters 139

5.3 Conclusion 161

Chapter 6: All-Solid-State-Battery Applications

6.1 Introduction 162

6.2 Study of Cell-Potential-Discharge Performance 163

6.3 Conclusion 172

Chapter 7: Summary 173

References 176