List of tables

Table 1.1 Glucose transporter proteins, tissue distribution and special properties
Table 5.1 LCMS conditions for ME-CMRH
Table 5.2 HPLC conditions of HALH
Table 5.3 HPLC conditions for HALH (LCMS of HALH)
Table 5.4 HPLC conditions for HALH (LCMS-MS of HALH)
Table 5.5 Moisture content/Loss on drying
Table 5.6 Chloroform and aqueous extractive values
Table 5.7 Fluorescence analysis
Table 5.8 Ash values
Table 5.9 Extractive values of *C. macrophylla* root and *H.arifolia* leaf extract
Table 5.10 Chemical tests for *C. macrophylla* root ethanol (95%) and ethanol (50%) extracts
Table 5.11 Chemical tests for *H.arifolia* leaf ethanol (95%) and ethanol (50%) extracts
Table 5.12 R_f values of the spots obtained in co-chromatography of the filtrate concentrate of CMRH hydrolysed
Table 5.13 Fractions from *C. macrophylla* root ethanol (50%) extract
Table 5.14 R_f values of the spots obtained in Si-gel G TLC performed on ethanol (50%) extract of *C. macrophylla* root.
Table 5.15 Data for calibration plot of rutin for the estimation of flavonoids
Table 5.16 HPLC estimation of the components in methanol eluate of ethanol (50%) extract of *C. macrophylla* roots (ME-CMRH)
Table 5.17 UV data of the components separated from ME-CMRH fraction

Table 5.18 IR data of the component (CM-1) separated from ME-CMRH (KBr pellet method)

Table 5.19 Proton NMR of the component (CM-1) separated ME-CMRH

Table 5.20 IR data of the component (CM-3) separated from ME-CMRH (KBr pellet method)

Table 5.21 Proton NMR data of the component (CM-3) separated from ME-CMRH

Table 5.22 IR data of the component (CM-2) separated from ME-CMRH (KBr pellet method)

Table 5.23 Proton NMR data of the component (CM-2) separated from ME-CMRH

Table 5.24 Mass values of the components present in ME-CMRH

Table 5.25 R_f values of the spots obtained in paper chromatography of HALH

Table 5.26 UV data determined (in methanol) of the bands separated by preparative chromatography from HALH

Table 5.27 IR data of the component (HA-1) separated from defatted HALH (KBr pellet method)

Table 5.28 Proton NMR data of the component (HA-1) separated from defatted HALH

Table 5.29 IR data of the component (HA-2) separated from defatted HALH (KBr pellet method)

Table 5.30 Proton NMR data of the component (HA-2) separated from defatted HALH
Table 5.31	IR data of the component (HA-3) separated from defatted HALH (KBr pellet method)
Table 5.32	Proton NMR data of the component (HA-3) separated from defatted HALH
Table 5.33	IR data of the component (HA-4) separated from defatted HALH (KBr pellet method)
Table 5.34	Proton NMR data of the component (HA-4) separated from defatted HALH
Table 5.35	HPLC estimation of defatted HALH
Table 5.36	Quantity of components present in defatted HALH (LC MS-MS method)
Table 5.37	Mass values of the components present in defatted HALH
Table 6.1	Oxidants/free radicals of physiological importance
Table 6.2	Radical reaction potentials of free radical couples
Table 6.3	Repair of oxidative damage
Table 6.4	Antioxidant activity of test samples
Table 6.5	ABTS scavenging assay
Table 6.6	DPPH scavenging assay
Table 6.7	Nitric oxide scavenging assay
Table 6.8	LPO assay
Table 6.9	Alpha amylase inhibition studies
Table 6.10	Alpha glucosidase inhibition studies of ME-CMRH, quercetin, rutin and acarbose
Table 6.11	DPP-IV inhibition studies
Table 6.12 Cytotoxic properties of test drugs on L-6 cell lines

Table 6.13 In vitro glucose uptake studies in L-6 cell lines for selection of plant

Table 6.14 In vitro glucose uptake studies in L-6 cell lines for active fraction identification from *C. macrophylla* root ethanol (50%) extract fraction (ME-CMRH)

Table 6.15 RT PCR Glut-4 gene amplification data of ME-CMRH

Table 6.16 RT PCR PPARγ gene amplification data from ME-CMRH

Table 6.17 RT PCR Glut-4 gene amplification data-defatted HALH

Table 7.1 Glide score of molecules present in CMRH

Table 7.2 Glide score of molecules present in HALH

Table 7.3 Prediction of ADME profile of selected analogues

Table 8.1 Data of glucose uptake study in rat hemidiaphragm

Table 8.2 Effect of test extracts (ME-CMRH) on blood glucose levels during treatment

Table 8.3 Effect of test extracts (ME-CMRH) on STZ induced changes on the body weight, HbA1c, CK and LDH
List of Figures

Fig.5.1 *C. macrophylla*
Fig.5.2 *H. arifolia*
Fig.5.3 *C. macrophylla* root TS
Fig.5.4 *H. arifolia* leaf TS
Fig.5.5 *H. arifolia* leaf epidermal peelings
Fig.5.6 Calibration plot of rutin for estimation of flavonoids
Fig.5.7 UV spectrum of CM-3 in methanol+/ shift reagent (0.01 N NaOH)
Fig.5.8 UV spectrum of CM-2 in methanol+/ shift reagent (0.01 N NaOH)
Fig.6.1 Reaction of ABTS scavenging assay
Fig.6.2 Reaction of DPPH scavenging assay
Fig.6.3 Reaction of thiobarbituric acid with malondialdehyde
Fig.6.4 Reaction of MTT assay
Fig.6.5 ABTS radical scavenging assay of CMRE and CMRH
Fig.6.6 ABTS radical scavenging assay of HALE and HALH
Fig.6.7 DPPH radical scavenging assay of CMRE and CMRH
Fig.6.8 DPPH radical scavenging assay of HALE and HALH
Fig.6.9 Nitric oxide radical scavenging assay of CMRE and CMRH
Fig.6.10 Nitric oxide radical scavenging assay of HALE and HALH
Fig.6.11 Lipid peroxidation inhibition assay of CMRE and CMRH
Fig.6.12 Lipid peroxidation inhibition assay of HALE and HALH
Fig.6.13 Alpha amylase inhibition activity of CMRE and CMRH
Fig.6.14 Alpha amylase inhibition activity of HALE and HALH
Fig.6.15 Alpha amylase inhibition activity of quercetin and rutin
Fig.6.16 Alpha amylase inhibition activity of acarbose
Fig.6.17 Alpha glucosidase inhibition activity of ME-CMRH and quercetin
Fig.6.18 Alpha glucosidase inhibition activity of acarbose and rutin
Fig.6.19 L-6 cell line normal
Fig.6.20 L-6 cell line Cytotoxic (CMRE-treated)
Fig.6.21 Cytotoxic activity of CMRE and CMRH on L-6 cell line
Fig.6.22 L-6 cell line (Before differentiation)
Fig.6.23 L-6 cell line (After myotube differentiation)
Fig.6.24 Glucose uptake assay in L-6 cell lines. Bar chart of study for plant selection
Fig.6.25 Glucose uptake assay in L-6 cell lines. Bar chart of study for active fraction selection
Fig.6.26 RT-PCR profile of Glut-4 gene amplified from drug treated L-6 cells (ME-CMRH)
Fig.6.27 Densitometric analysis of gene transcriptions. The relative level of Glut-4 gene expression was normalized to GAPDH. (ME-CMRH)
Fig.6.28 RT-PCR profile of PPARγ gene amplified from drug treated L-6 cells (ME-CMRH)
Fig.6.29 Densitometric analysis of gene transcriptions. The relative level of PPARγ gene expression was normalized to GAPDH. (ME-CMRH)
Fig.6.30 RT-PCR profile of Glut-4 gene amplified from drug treated L-6 cells (defatted HALH)
Fig.6.31 Densitometric analysis of gene transcriptions. The relative level of Glut-4 gene expression was normalized to GAPDH. (defatted HALH)

DRUG MOLECULE-RECEPTOR PROTEIN INTERACTION-RIBBON STRUCTURE
Fig.7.1 Quercetin
Fig.7.2 Rutin
Fig.7.3 Gallic acid
Fig.7.4 Apigenin
Fig.7.5 Kaempferol
LIGAND MOLECULE INTERACTION DIAGRAM

Fig. 7.6 Quercetin
Fig. 7.7 Rutin
Fig. 7.8 Gallic acid
Fig. 7.9 Apigenin
Fig. 7.10 Kaempferol

Fig. 8.1 Isolated rat hemidiaphragm
Fig. 8.2 Schematic representation of rat hemidiaphragm glucose uptake
Fig 8.3: Effect of test extracts (ME-CMRH) on blood glucose levels during treatment.
Fig 8.4: Effect of test extracts (ME-CMRH) on body weight levels during treatment.
Fig 8.5: Effect of test extracts (ME-CMRH) on CK levels during treatment.
Fig 8.6 Effect of test extracts (ME-CMRH) on %HbA1c levels during treatment.
Fig 8.7: Effect of test extracts (ME-CMRH) on LDH levels during treatment.
Fig. 8.8: Percentage change of blood glucose from day day 0 to day 28
Fig .8.9 Section of the normal pancreas
Fig. 8.10 Section of the pancreas-positive control (Diabetic control)
Fig. 8.11 Section of the pancreas- after treatment with ME-CMRH (250 mg/kg b.wt)
Fig. 8.12 Section of the pancreas – after treatment with ME-CMRH (500 mg/kg b.wt)
Fig. 8.13 Section of the pancreas after treatment with standard drug (Gliclazide 25 mg/kg)