LIST OF FIGURES

Figure 1.1: Ultra-structure of Blood vessel ...3

Figure 1.2: Schematic set up of a typical electrospinning setup10

Figure 3.1: Effect of various solvents on morphology of PLA-PCL nanofiber at Concentration (15 % w/v), Flow rate (0.001 mL/min), Electric voltage (15 kV), Tip to target distance (10 cm) and Needle gauge size (24 G)51

Figure 3.2: Effect of polymeric concentrations on morphology of PLA-PCL nanofiber at constant Flow rate (0.001 mL/min), Electric voltage (15 kV), Tip to target distance(10 cm), needle gauge size (24 G) ...53

Figure 3.3: Effect of Applied voltage in PLA-PCL nanofiber surface morphology at polymer Concentration (15 %w/v); Flow rate (0.001 mL/min); Tip to target distance (10 cm); Needle gauge size (24 G) ...55

Figure 3.4: Effect of flow rate in PLA-PCL nanofiber surface morphology at polymer concentration (15 %w/v); flow rate (0.001 mL/min)Tip to target distance (10 cm); Needle gauge size (24 G) ...56

Figure 3.5: Effect of tip-to–target distances in PLA-PCL nanofiber surface morphology at constant polymer concentration (15 %w/v); Flow rate (0.001 mL/min); Needle gauge size (24 G) ...57

Figure 3.6: Scanning electron micrographs of optimized PLA, PLA-PCL and PCL nanofibers with their corresponding 2D-FFT image, angular distribution curve, colour code map and histogram for the degree of orientation and distribution ...61

Figure 3.7: FTIR spectra of [A] PLA(100%) and PLA(100%) parent polymers; [B] Physical blends of PLA-PCL (75:25), (50:50) and (25:75); [C] Intermolecular hydrogen bond between the carbonyl group of PCL and hydroxyl terminal end of PLA ...64

Figure 3.8: XRD pattern of PLA, PCL and PLA-PCL blend electrospun nanofibers..65

Figure 4.1: Hemolytic assay of PLA-PCL electrospun scaffolds [100:0; 75:25; 50:50; 25:75 and 0:100] ...79
Figure 4.2: SEM Micrographs of HUVEC adhesion after 1 and 3 day of cell seeding on PLA-PCL electrospun scaffolds [100:0; 75:25; 50:50; 25:75 and 0:100].

Figure 4.3: Live/dead assay showing HUVEC cell viability on 2D random nanofibers of on 1 and 3 day over the PLA-PCL electrospun scaffolds [100:0; 75:25; 50:50; 25:75 and 0:100]. * indicates the $p < 0.05$.

Figure 4.4: Graph showing MTS assay as result of HUVEC proliferation on 2D random nanofibers of HUVEC adhesion on day 1, and 3 over the PLA-PCL electrospun scaffolds [100:0; 75:25; 50:50; 25:75 and 0:100]. * indicates the $p < 0.05$.

Figure 4.5: HUVEC gene expression profile of [A] von Willebrand factor (vWF), [B] elastin, [C] Angiopoitein on day 1 and 3 over the PLA-PCL (100%), PLA-PCL (75:25), PLA-PCL (50:50), PLA-PCL (25:75) and PLA-PCL (0:100) electrospun nanofibrous scaffolds. * indicates $p < 0.05$.

Figure 5.1: Different possible orientations of nanofibres [A] Random orientation; [B] Radial orientation; [C] Axial orientation and [D] Diagonal orientation.

Figure 5.2: Electrospinning set-up for the fabrication of three-dimensional tubular axially aligned nanofibrous small diameter vascular grafts. [A] Schematic setup for fabricating aligned nanofibres; [B] Macroscopic images of 3D tubular small diameter vascular grafts.

Figure 5.3: Effect of rotation speed of the dynamic collector on nanofibre alignment in electrospinning.

Figure 5.4: Final optimized images of PLA, PLA–PCL and PCL nanofibres with their corresponding 2D-FFT image, angular distribution curve, colour code map and the histogram for the degree of orientation and distribution.

Figure 5.5: XRD pattern of the 3D axially aligned nanofibrous scaffolds of different blends of PLA-PCL.

Figure 5.6: Surface morphology 3D tubular aligned vascular grafts of PLA-PCL physical blends over the period of four weeks when placed in PBS at 37°C.

Figure 5.7: Molecular weight of 3D tubular aligned vascular grafts after in vitro degradation of PLA-PCL physical blends over the period of four weeks using gel permeation chromatography.
Figure 6.1: Cartoon showing [A] endothelial cells, [B] aligned nanofibres; [C] oriented endothelial cells on aligned fibres and [D] enhanced cell-cell interaction on aligned cells117

Figure 6.2: Percentage of hemolysis in comparison with current commercial PTFE grafts, positive control and negative control over the 3D tubular axially aligned nanofibrous small diameter vascular grafts.................................122

Figure 6.3: Platelet adhesion on the scaffolds [A] Hydrophilic substrate (coverslip); [B] PLA-PCL (100:0); [C] PLA-PCL (75:25); [D] PLA-PCL (50:50); [E] PLA-PCL (25:75) and [F] PLA-PCL (0:100). [G] Quantitative measure of platelet adhesion using LDH assay in comparison to TCPS as control...123

Figure 6.4: Cell adhesion on different time point on the different ratios of PLA-PCL physical blend scaffolds...125

Figure 6.5: Cells viability after day 1 and 3 of culture on 3D axially aligned PLA-PCL nanofibrous tubular scaffolds...126

Figure 6.6: Proliferation of HUVEC on the 3D tubular axially aligned nanofibrous vascular grafts. (*, # indicates p <0.05) ..127

Figure 6.7: Immunostaining of HUVEC after 1 day of culture on different 3D axially aligned nanofibrous PLA-PCL scaffolds (White arrows indicates the direction of alignment)..129

Figure 6.8: Immunostaining of HUVEC after 3 day of culture on different 3D axially aligned nanofibrous PLA-PCL scaffolds (White arrows indicates the direction of alignment)..130

Figure 6.9: RT-PCR studies of HUVEC on the PLA-PCL 3D axially aligned nanofibrous tubular scaffold at different time point showing expression level of [A] vWF, [B] Elastin, and [C] Angiopotien genes. (* indicates p <0.05)...132