TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1. NEED FOR VIBRATION CONTROL
1.2. BASICS OF ISOLATOR
1.3. OBJECTIVE OF AVI
1.4. WORKING PRINCIPLE OF AVI SYSTEM
1.5. STEWART PLATFORM
1.5.1. Applications of Stewart Platform
1.6. AVI USING STEWART PLATFORM
1.7. PRESENT WORK

CHAPTER 2: LITERATURE REVIEW

2.1. PASSIVE ISOLATION SYSTEM
2.2. HYBRID ISOLATION SYSTEM (PASSIVE AND ACTIVE)
2.3. ACTIVE VIBRATION ISOLATION SYSTEM
2.3.1. Effectiveness of AVI System
2.3.2. AVI System for Machine Isolation
2.3.3. Application of AVI System to Building Vibration
2.3.4. Application of AVI System to Marine Systems
2.3.5. Controller Design of an AVI system
CHAPTER 3: MODELLING OF STEWART PLATFORM

3.1. STEWART PLATFORM

3.2. WORKING MODEL OF SP
 3.2.1. Control Circuits
 3.2.2. Control Unit
 3.2.3. Microcontroller
 3.2.4. Control Program

3.3. MODEL OF THE SIX DOF VIBRATION ISOLATION SYSTEM

3.4. INVERSE KINEMATICS OF STEWART PLATFORM

3.5. MODELLING OF A SINGLE LEG IN MATLAB/SIMULINK

3.6. THE OVERALL MODEL

CHAPTER 4: OPTIMIZATION OF DESIGN PARAMETERS USING GENETIC ALGORITHM

4.1. GA BASED DESIGN OPTIMIZATION
 4.1.1. Objective and Constraints
 4.1.2. Implementing GA optimization

4.2. AVI OF FOUNDATION FROM MACHINERY VIBRATION
 4.2.1. Simulation Results for Optimal Parameters of SP

4.3. AVI OF SENSITIVE EQUIPMENT FROM VIBRATING FLOOR
 4.3.1. Simulation Results for Optimal Parameters of SP
CHAPTER 5: DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK BASED DESIGN OPTIMIZATION

5.1. AVI OF FOUNDATION FROM MACHINERY VIBRATION

5.1.1. Neural Network Prediction

5.1.2. Number of Neurons

5.2. AVI OF EQUIPMENT FROM FLOOR VIBRATION

5.2.1. Neural Network Prediction

5.2.2. Number of Neurons

CHAPTER 6: RESULTS AND DISCUSSION

6.1. AVI OF FOUNDATION FROM MACHINERY VIBRATION

6.1.1. Effect of Design Parameters on AVI of Foundation

6.2. AVI OF SENSITIVE EQUIPMENT FROM FLOOR VIBRATIONS

6.2.1. Effect of Design Parameters on AVI of Equipment

6.3. EFFECT OF STIFFNESS ON AVI OF SP

CHAPTER 7: VALIDATION

CHAPTER 8: CONCLUSION

8.1. RESEARCH OUTCOMES

8.2. SCOPE FOR FURTHER WORK

REFERENCES

APPENDIX A: OPTIMIZATION ALGORITHMS

APPENDIX B: LIST OF ABBREVIATIONS AND SYMBOLS

LIST OF PAPERS PUBLISHED ON THE BASIS OF THIS THESIS