Contents

Chapter 1: Introduction

1.1 Organization of the Thesis
1.2 Overview of Electrocardiogram
1.3 Motivation

Chapter 2: Theory

2.1 Thin film deposition Techniques
 2.1.1 Chemical methods
 2.1.2 Physical methods
2.2 Characterization of Thin films
 2.2.1 Optical Characterization
 2.2.2 Structural Characterization
 2.2.3 Electrical Characterization

Chapter 3: Experimental Techniques

3.1 TiO2 thin film preparation
 3.3.1 TiO2 nanoparticle preparation
3.2 Material characterization
3.3 Metal-Oxide –Semiconductor (MOS) device Characterization
3.4 Metal-Insulator-Metal Characterization

Chapter 4: Sensor Fabrication

4.1 Substrate cleaning methods
4.2 Requirements
4.3 Capacitive sensor fabrication

Chapter 5: Development of ECG amplifier and testing the developed sensor
5.1 Development of ECG amplifier with the conventional sensor
5.2 Testing the fabricated sensor with the developed amplifier
5.3 Skin impedance measurements

Chapter 6: Development of Microcontroller based ECG system

6.1 System block diagram
6.2 The Microcontroller
6.3 Hardware requirements
6.4 Hardware development

Chapter 7: Software development

7.1 Software requirements
7.2 Software development

Chapter 8: Assembling and testing

8.1 Assembling the ECG system
8.2 Testing the hardware for ECG signals using conventional and the developed sensors
8.3 Signal validation

Chapter 9: Conclusion and future work

Appendix A – Software Programs

Appendix B – Signal Validation Certificate

Appendix C – Data Sheets

Appendix D – Hardware Photos

Appendix E – PCB Layout

Appendix F – Published Papers