<table>
<thead>
<tr>
<th>Table no.</th>
<th>Caption to the Table</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various forms of the local field correction function f(q).</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Potential parameter found from zero pressure condition and other constants and parameters used in the computations.</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Contribution of individual terms to Total energy for simple metals.</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Total energy for simple metals using different screening functions.</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Contribution of individual terms to Total pressure for simple metals.</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Monovacancy resistivity of Alkali metals.</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>Monovacancy resistivity of Al and Pb.</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Radial and Tangential force constants for Lithium.</td>
<td>104</td>
</tr>
<tr>
<td>3.7</td>
<td>Radial and Tangential force constants for Sodium.</td>
<td>105</td>
</tr>
<tr>
<td>3.8</td>
<td>Radial and Tangential force constants for Potassium.</td>
<td>106</td>
</tr>
<tr>
<td>3.9</td>
<td>Radial and Tangential force constants for Rubidium.</td>
<td>107</td>
</tr>
<tr>
<td>3.10</td>
<td>Radial and Tangential force constants for Cesium.</td>
<td>108</td>
</tr>
<tr>
<td>3.11</td>
<td>Radial and Tangential force constants for Aluminium.</td>
<td>109</td>
</tr>
<tr>
<td>3.12</td>
<td>Radial and Tangential force constants for Lead.</td>
<td>110</td>
</tr>
<tr>
<td>3.13</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Lithium.</td>
<td>117</td>
</tr>
<tr>
<td>3.14</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Sodium.</td>
<td>118</td>
</tr>
<tr>
<td>3.15</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Potassium.</td>
<td>119</td>
</tr>
<tr>
<td>3.16</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Rubidium.</td>
<td>120</td>
</tr>
<tr>
<td>3.17</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Cesium.</td>
<td>121</td>
</tr>
<tr>
<td>3.18</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Aluminium.</td>
<td>122</td>
</tr>
<tr>
<td>3.19</td>
<td>Dynamical elastic constants C11, C12, C44, C’ and Bulk modulus B for Lead.</td>
<td>123</td>
</tr>
<tr>
<td>3.20</td>
<td>Deviation from Cauchy relation, Cauchy’s ratio, Poisson’s ratio and Young’s modulus for Alkali metals.</td>
<td>126</td>
</tr>
<tr>
<td>3.21</td>
<td>Deviation from Cauchy relation, Cauchy’s ratio, Poisson’s ratio and Young’s modulus for Al and Pb.</td>
<td>127</td>
</tr>
<tr>
<td>3.22</td>
<td>Propagation velocities of elastic waves in Alkali metals.</td>
<td>130</td>
</tr>
<tr>
<td>3.23</td>
<td>Propagation velocities of elastic waves in Al and Pb.</td>
<td>131</td>
</tr>
<tr>
<td>3.24</td>
<td>(Y_1, \ Y_2) and A for Alkali metals.</td>
<td>144</td>
</tr>
<tr>
<td>3.25</td>
<td>(Y_1, \ Y_2) and A for polyvalent simple metals.</td>
<td>145</td>
</tr>
<tr>
<td>4.1</td>
<td>Electrical resistivity of liquid Lithium.</td>
<td>152</td>
</tr>
<tr>
<td>4.2</td>
<td>Electrical resistivity of liquid Sodium.</td>
<td>153</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrical resistivity of liquid Potassium.</td>
<td>154</td>
</tr>
<tr>
<td>4.4</td>
<td>Electrical resistivity of liquid Rubidium.</td>
<td>155</td>
</tr>
<tr>
<td>4.5</td>
<td>Electrical resistivity of liquid Cesium.</td>
<td>156</td>
</tr>
<tr>
<td>4.6</td>
<td>Electrical resistivity of liquid Aluminium.</td>
<td>157</td>
</tr>
<tr>
<td>4.7</td>
<td>Electrical resistivity of liquid Lead.</td>
<td>158</td>
</tr>
<tr>
<td>4.8</td>
<td>Thermoelectric power of liquid Lithium.</td>
<td>163</td>
</tr>
<tr>
<td>4.9</td>
<td>Thermoelectric power of liquid Sodium.</td>
<td>164</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>Thermoelectric power of liquid Potassium.</td>
<td>165</td>
</tr>
<tr>
<td>4.11</td>
<td>Thermoelectric power of liquid Rubidium.</td>
<td>166</td>
</tr>
<tr>
<td>4.12</td>
<td>Thermoelectric power of liquid Cesium.</td>
<td>167</td>
</tr>
<tr>
<td>4.13</td>
<td>Thermoelectric power of liquid Aluminium.</td>
<td>168</td>
</tr>
<tr>
<td>4.14</td>
<td>Thermoelectric power of liquid Lead.</td>
<td>169</td>
</tr>
<tr>
<td>4.15</td>
<td>Thermal conductivity of liquid Alkali metals.</td>
<td>172</td>
</tr>
<tr>
<td>4.16</td>
<td>Thermal conductivity of liquid Al and Pb.</td>
<td>173</td>
</tr>
<tr>
<td>4.17</td>
<td>Electronic susceptibility for some simple liquid metals.</td>
<td>178</td>
</tr>
<tr>
<td>4.18</td>
<td>K_s/K_0 of liquid metals.</td>
<td>181</td>
</tr>
<tr>
<td>4.19</td>
<td>Temperature coefficient of Knight shift of liquid metals.</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Total crystal energy - E_{Tot} for the Li$_{1-x}$ Na$_x$ alloy.</td>
<td>223</td>
</tr>
<tr>
<td>5.2</td>
<td>Total crystal energy - E_{Tot} for the Li$_{1-x}$ K$_x$ alloy.</td>
<td>223</td>
</tr>
<tr>
<td>5.3</td>
<td>Total crystal energy - E_{Tot} for the Li$_{1-x}$ Rb$_x$ alloy.</td>
<td>224</td>
</tr>
<tr>
<td>5.4</td>
<td>Total crystal energy - E_{Tot} for the Li$_{1-x}$ Cs$_x$ alloy.</td>
<td>224</td>
</tr>
<tr>
<td>5.5</td>
<td>Total crystal energy - E_{Tot} for the Na$_{1-x}$ K$_x$ alloy.</td>
<td>225</td>
</tr>
<tr>
<td>5.6</td>
<td>Total crystal energy - E_{Tot} for the Na$_{1-x}$ Rb$_x$ alloy.</td>
<td>225</td>
</tr>
<tr>
<td>5.7</td>
<td>Total crystal energy - E_{Tot} for the Na$_{1-x}$ Cs$_x$ alloy.</td>
<td>226</td>
</tr>
<tr>
<td>5.8</td>
<td>Total crystal energy - E_{Tot} for the K$_{1-x}$ Rb$_x$ alloy.</td>
<td>226</td>
</tr>
<tr>
<td>5.9</td>
<td>Total crystal energy - E_{Tot} for the K$_{1-x}$ Cs$_x$ alloy.</td>
<td>227</td>
</tr>
<tr>
<td>5.10</td>
<td>Total crystal energy - E_{Tot} for the Rb$_{1-x}$ Cs$_x$ alloy.</td>
<td>227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Third order contribution to total energy for some simple metals.</td>
<td>257</td>
</tr>
</tbody>
</table>