LIST OF FIGURES

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>DESCRIPTION</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Fly-Ash Generations (Million Tons per Annum) From 1996 - 2012 in India</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Percentage Utilization of fly ash from 1996 - 2012 in India</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Methodology of Research Work</td>
<td>41</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash in M25 Grade Concrete</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Hypo Sludge in M25 Grade Concrete</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge in M25 Grade Concrete</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Glass Fibre in M25 Grade Concrete</td>
<td>56</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Hypo Sludge + Glass Fibre in M25 Grade Concrete</td>
<td>56</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M25 Grade Concrete</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Compressive Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) Concrete Time in Days for M25 Grade Concrete</td>
<td>58</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Compressive Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) with Addition of Glass Fibre Concrete Time in Days for M25 Grade Concrete</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash in M40 Grade Concrete</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Hypo Sludge in M40 Grade Concrete</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge in M40 Grade Concrete</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Glass Fibre in M40 Grade Concrete</td>
<td>63</td>
</tr>
</tbody>
</table>
Figure 5.13 Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Hypo Sludge + Glass Fibre in M40 Grade Concrete

Figure 5.14 Comparison of Compressive Strength (cubes) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M40 Grade Concrete

Figure 5.15 Compressive Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) Concrete Time in Days for M40 Grade Concrete

Figure 5.16 Compressive Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) with Addition of Glass Fibre Concrete Time in Days for M40 Grade Concrete

Figure 5.17 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash in M25 Grade Concrete

Figure 5.18 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Hypo Sludge in M25 Grade Concrete

Figure 5.19 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge in M25 Grade Concrete

Figure 5.20 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash + Glass Fibre in M25 Grade Concrete

Figure 5.21 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Hypo Sludge + Glass Fibre in M25 Grade Concrete

Figure 5.22 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M25 Grade Concrete

Figure 5.23 Flexural Strength (N/mm2) Development of Hybrid Mix (Fly Ash + Hypo Sludge) Concrete Time in Days for M25 Grade Concrete

Figure 5.24 Flexural Strength (N/mm2) Development of Hybrid Mix (Fly Ash + Hypo Sludge) with Addition of Glass Fibre Concrete Time in Days for M25 Grade Concrete

Figure 5.25 Correlation between observed fcr and computed fcr from cube test of various concrete mixes for M25 grade concrete

Figure 5.26 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash in M40 Grade Concrete

Figure 5.27 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Hypo Sludge in M40 Grade Concrete

Figure 5.28 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Hypo Sludge in M40 Grade Concrete
Fly Ash + Hypo Sludge in M40 Grade Concrete

Figure 5.29 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash + Glass Fibre in M40 Grade Concrete 78

Figure 5.30 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Hypo Sludge + Glass Fibre in M40 Grade Concrete 78

Figure 5.31 Comparison of Flexural Strength (beams) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M40 Grade Concrete 79

Figure 5.32 Flexural Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) Concrete Time in Days for M40 grade concrete 80

Figure 5.33 Flexural Strength (N/mm²) Development of Hybrid Mix (Fly Ash + Hypo Sludge) with Addition of Glass Fibre Concrete Time in Days for M40 grade concrete 81

Figure 5.34 Correlation between observed fcr and computed fcr from cube test of various concrete mixes for M40 grade concrete 82

Figure 5.35 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Fly Ash in M25 Grade Concrete 85

Figure 5.36 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Hypo Sludge in M25 Grade Concrete 85

Figure 5.37 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge in M25 Grade Concrete 86

Figure 5.38 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Fly Ash + Glass Fibre in M25 Grade Concrete 86

Figure 5.39 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Hypo Sludge + Glass Fibre in M25 Grade Concrete 87

Figure 5.40 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M25 Grade Concrete 87

Figure 5.41 Correlation between Observed Modulus of Elasticity (EcO) and Computed Modulus of Elasticity (EcC) from cube test of various concrete mixes for M25 grade concrete 89

Figure 5.42 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Fly Ash in M40 Grade Concrete 91

Figure 5.43 Comparison of Modulus of Elasticity (cylinders) (N/mm²) of Various Mix of Hypo Sludge in M40 Grade Concrete 92
Figure 5.58 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of C6 at 28 Days
Figure 5.59 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of D5 at 28 Days
Figure 5.60 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of D6 at 28 Days
Figure 5.61 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of E5 at 28 Days
Figure 5.62 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F5 at 28 Days
Figure 5.63 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F6 at 28 Days
Figure 5.64 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G5 at 28 Days
Figure 5.65 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G6 at 28 Days
Figure 5.66 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of H2 at 28 Days
Figure 5.67 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of A2 at 90 Days
Figure 5.68 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of B5 at 90 Days
Figure 5.69 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of B6 at 90 Days
Figure 5.70 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of C5 at 90 Days
Figure 5.71 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of C6 at 90 Days
Figure 5.72 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of C7 at 90 Days
Figure 5.73 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of C8 at 90 Days
Figure 5.74 Comparison of Slab Thickness (mm) for National Highway with
Different CVPD for Concrete Mix of D5 at 90 Days

Figure 5.75 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of D6 at 90 Days

Figure 5.76 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of D7 at 90 Days

Figure 5.77 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of D8 at 90 Days

Figure 5.78 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of E5 at 90 Days

Figure 5.79 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of E6 at 90 Days

Figure 5.80 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of E7 at 90 Days

Figure 5.81 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F5 at 90 Days

Figure 5.82 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F6 at 90 Days

Figure 5.83 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F7 at 90 Days

Figure 5.84 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of F8 at 90 Days

Figure 5.85 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G5 at 90 Days

Figure 5.86 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G6 at 90 Days

Figure 5.87 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G7 at 90 Days

Figure 5.88 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of G8 at 90 Days

Figure 5.89 Comparison of Slab Thickness (mm) for National Highway with Different CVPD for Concrete Mix of H2 at 90 Days

Figure 5.90 Comparison of Cost of Concrete in m3 of Various Mix of Fly Ash + Hypo Sludge in M25 Grade Concrete

134 135 135 136 136 137 137 138 138 139 139 140 140 141 141 150 150

XXVI
Figure 5.91 Comparison of Cost of Concrete in m^3 of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M25 Grade Concrete

Figure 5.92 Comparison of Cost of Concrete in m^3 of Various Mix of Fly Ash + Hypo Sludge in M40 Grade Concrete

Figure 5.93 Comparison of Cost of Concrete in m^3 of Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M40 Grade Concrete

Figure 5.94 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Fly Ash in M25 Grade Concrete

Figure 5.95 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Hypo Sludge in M25 Grade Concrete

Figure 5.96 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Fly Ash + Hypo Sludge in M25 Grade Concrete

Figure 5.97 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Fly Ash + Glass Fibre in M25 Grade Concrete

Figure 5.98 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Hypo Sludge + Glass Fibre in M25 Grade Concrete

Figure 5.99 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for Rural Road with Different Wheel Load for Various Mix of Fly Ash + Hypo Sludge + Glass Fibre in M25 Grade Concrete

Figure 5.100 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of A2 at 28 Days

Figure 5.101 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of B5 at 28 Days

Figure 5.102 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of C5 at 28 Days

Figure 5.103 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of C6 at 28 Days

Figure 5.104 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National
Figure 5.121 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of D7 at 90 Days

Figure 5.122 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of D8 at 90 Days

Figure 5.123 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of E5 at 90 Days

Figure 5.124 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of E6 at 90 Days

Figure 5.125 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of E7 at 90 Days

Figure 5.126 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of F5 at 90 Days

Figure 5.127 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of F6 at 90 Days

Figure 5.128 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of F7 at 90 Days

Figure 5.129 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of F8 at 90 Days

Figure 5.130 Cost Comparison of 1m x 1m Slab (Rs./Sq. mt.) for National Highway with Different CVPD for Concrete Mix of G5 at 90 Days

Figure 5.131 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of G6 at 90 Days

Figure 5.132 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of G7 at 90 Days

Figure 5.133 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of G8 at 90 Days

Figure 5.134 Cost Comparison of 1m x 1m Slab (Rs./Sq. m.) for National Highway with Different CVPD for Concrete Mix of H2 at 90 Days

Figure 6.1 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge (FA+HS) Combination at 30kN and 51kN wheel load for 2% CBR

Figure 6.2 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge with addition of Glass Fiber (FA+HS+GF) Combination at 30kN and 51kN wheel load for 2% CBR
Figure 6.3 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge (FA+HS) Combination at 30kN and 51kN wheel load for 4% CBR

Figure 6.4 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge with the addition of Glass Fiber (FA+HS+GF) Combination at 30kN and 51kN wheel load for 4% CBR

Figure 6.5 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge (FA+HS) Combination at 30kN and 51kN wheel load for 6% CBR

Figure 6.6 Slab thickness in mm for rural road with Fly Ash and Hypo Sludge with addition of Glass Fiber (FA+HS+GF) Combination at 30kN and 51kN wheel load for 6% CBR

Figure 6.7 Slab thickness in mm for national highway with Fly Ash and Hypo Sludge (FA+HS) Combination @ 90 days with 100mm DLC 2% CBR for D6 Concrete

Figure 6.8 Slab thickness in mm for national highway with Fly Ash and Hypo Sludge (FA+HS) Combination @ 90 days with 100mm DLC 4% CBR for D6 Concrete

Figure 6.9 Slab thickness in mm for national highway with Fly Ash and Hypo Sludge (FA+HS) Combination @ 90 days with 100mm DLC 6% CBR for D6 Concrete