Index

Chapter 1 Introduction 1
1.1 Physical and chemical properties of lactic acid 2
1.2 Lactic acid bacteria: Bugs of the new millennium 4
 1.2.1 Bacteriocins 5
 1.2.2 Proteolysis 5
 1.2.3 Autolysins, cheese ripening and oral vaccination 6
 1.2.4 Amylase production 6
1.3 Metabolic pathways operated by lactic acid bacteria 7
1.4 Lactic acid production 7
 1.4.1 Whey 9
 1.4.2 Molasses 9
 1.4.3 Starch, cellulose and hemicellulose 10
1.5 Fermentation 11
1.6 Applications 12
1.7 Present study 13
1.8 References 15

Chapter 2 Lactic acid production using date juice 24
2.1 Intorduction 24
2.2 Palm date 25
 2.2.1 Composition and quality 25
 2.2.2 Medicinal uses 30
 2.2.3 Products through fermentation 30
2.3 Materials and methods 31
 2.3.1 Organisms and inoculum development 31
 2.3.2 Media preparation 31
 2.3.3 Analyses 32
2.4 Results and discussion 33
 2.4.1 Organism 33
 2.4.2 Nutrient composition of dates 34
 2.4.3 Lactic acid production using date juice 35
 2.4.4 Effect of pH and temperature on lactic acid production 36
2.5 Conclusion 38
2.6 References 40

Chapter 3 Statistical optimization 43
3.1 Introduction 43
 3.1.1 Plackett-Burman design 44
 3.1.2 Response surface method 44
 3.1.3 Central composite design 45
 3.1.3.1 Center points in CCD 46
 3.1.3.2 Blocking in central composite designs 48
3.2 Materials and methods 49
 3.2.1 Inoculum and media preparation 49
Chapter 4: Lactic acid production and recovery

4.1 Synthetic manufacture
4.2 Microbial fermentation
4.2.1 Continuous and batch fermentations
4.2.2 Simultaneous saccharification and fermentation
4.2.3 Lactic acid production by immobilized cells
4.2.4 Extractive lactic acid fermentation
4.3 Recovery process
4.3.1 Filtration, carbon treatment and evaporation
4.3.2 Ca-lactate crystallization
4.3.3 Liquid-liquid extraction
4.3.4 Distillation of lactate esters
4.3.5 Lactic acid extraction from silage
4.3.6 Electrodialysis
4.4 Materials and methods
4.4.1 Labscale production of lactic acid
4.4.2 Recovery of lactic acid
4.4.2.1 Ion-exchange resin, its preparation and extraction of lactic acid
4.4.2.2 Recovery by solvent extraction
4.5 Results and discussions
4.5.1 Recovery of lactic acid by ion-exchange resin
4.5.2 Lactic acid recovery by organic solvent
4.6 Conclusion
4.7 References

Chapter 5: Lactic acid co-polymer and sustained drug release

5.1 Introduction
5.2 Biomedical field and corresponding application
5.3 Aliphatic polyesters
5.3.1 Chemically derived aliphatic polyesters
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Advantages of sustained drug release systems</td>
<td>116</td>
</tr>
<tr>
<td>5.5 Disadvantages of sustained-release drug delivery systems</td>
<td>117</td>
</tr>
<tr>
<td>5.6 Technologies for sustained drug release systems</td>
<td>117</td>
</tr>
<tr>
<td>5.6.1 Physical entrapment</td>
<td>117</td>
</tr>
<tr>
<td>5.6.2 Liposomes</td>
<td>117</td>
</tr>
<tr>
<td>5.6.3 Microencapsulation</td>
<td>118</td>
</tr>
<tr>
<td>5.6.4 Microemulsions</td>
<td>118</td>
</tr>
<tr>
<td>5.7 Materials and methods</td>
<td>119</td>
</tr>
<tr>
<td>5.7.1 Materials</td>
<td>119</td>
</tr>
<tr>
<td>5.7.2 Preparation of copolymers</td>
<td>119</td>
</tr>
<tr>
<td>5.7.3 Drug incorporation</td>
<td>119</td>
</tr>
<tr>
<td>5.7.4 In vitro drug release</td>
<td>119</td>
</tr>
<tr>
<td>5.7.5 Swelling kinetics</td>
<td>120</td>
</tr>
<tr>
<td>5.7.6 Characterization of polymers</td>
<td>120</td>
</tr>
<tr>
<td>5.7.7 Molecular weight between two croslinks by swelling study</td>
<td>121</td>
</tr>
<tr>
<td>5.8 Results and discussion</td>
<td>122</td>
</tr>
<tr>
<td>5.8.1 Effect of molar ratio on polymer</td>
<td>122</td>
</tr>
<tr>
<td>5.8.2 Drug release</td>
<td>123</td>
</tr>
<tr>
<td>5.8.3 Equilibrium swelling ratio</td>
<td>125</td>
</tr>
<tr>
<td>5.8.4 Swelling kinetics</td>
<td>125</td>
</tr>
<tr>
<td>5.8.5 Characterization of copolymers</td>
<td>127</td>
</tr>
<tr>
<td>5.9 Conclusion</td>
<td>130</td>
</tr>
<tr>
<td>5.10 References</td>
<td>131</td>
</tr>
</tbody>
</table>