CHAPTER I
INTRODUCTION AND SCOPE OF THE PRESENT WORK

1.1 Introduction 2
 1.1 (A) Amorphous carbon 2
 1.1 (B) Crystalline carbon 3
 1.1 (C) Diamond 3
 1.1 (D) Graphite 5
 1.1 (E) Fullerenes 8

1.2 Industrial synthetic carbon 8
 1.2.1 Processing Methods 11
 1.2.1.1 Chemical vapor deposition 11
 1.2.1.2 Pyrolysis (Carbonization) 12
 1.2.1.2 (a) Carbonization methods 12
 1.2.1.2. (b) Factors influencing carbonization 13

1.3 Carbon from natural precursors 15
 1.3.1 Selection of raw material for developing porous carbon 15
 1.3.1.1 Biomass 16
 1.3.1.1 (a) Constituents of biomass 16
 1.3.1.1 (b) Other natural precursors 17
 1.3.2 Different natural precursors 17
1.3.2.1 Banana fibers
1.3.2.2 Coconut fibers
1.3.2.3 Pine wood
1.3.3 Porosity of activated carbons
1.3.3.1 Porosity and Pore size distribution
1.3.4 Adsorption isotherms

1.4 Composites
1.4.1 Particle reinforced composites
1.4.1.1 Raw materials used for processing of composites
1.4.1.1(a) Phenolic resin as matrix
1.4.1.1 (b) Silicon carbide
1.4.1.1 (b).1 General properties of SiC
1.4.1.1. (b).2 Applications of SiC
1.4.1.1 (c) Graphite powder
1.4.1.1 (d) Carbon black
1.4.2 Fiber reinforced composites
1.4.2.1 High performance carbon fibers
1.4.2.1 (a) Resin precursors
1.4.2.1 (b) Pitch precursors
1.4.2.1 (c) Synthetic pitches
1.4.2.1 (d) Petroleum pitches
1.4.2.1 (e) Coal tar pitches
CHAPTER II

EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES

Introduction 53

2.1 Raw materials used 53

2.2 Carbon material 54

 2.2.1 Carbon from natural precursors 54
 2.2.2 Synthetic carbon and composite materials 54
 2.2.2.1 Industrial carbon and graphite 54
 2.2.2.2 SiC/carbon reinforced particulate composites 55
 2.2.3 Carbon fiber reinforced carbon composites 59

2.3 Processing of various carbon materials 60

 2.3.1 Carbonization of natural precursors 60
 2.3.2 Carbonization of polymer composites to yield carbon matrix 61
 composites
 2.3.3 General flow chart representing experimental procedure 63

2.4 Characterization techniques 63

 2.4.1 Physical properties 64
 2.4.1.1 Weight Loss and Volume shrinkage 64
 2.4.1.2 Density and porosity 64
 2.4.2 Surface morphology 66
 2.4.2.1 Optical microscopy 66
CHAPTER III

Carbon from Natural Precursors

Introduction 82

3.1 Classification of natural fibers 83

3.2 Physical changes during carbonization 83

3.2.1 Weight loss 83

3.2.2 Yield after carbonization 85

3.3 Thermal Gravimetric Analysis 86

3.4 Surface morphology 90

3.4.1 Surface morphology of banana fiber 90

3.4.2 Surface morphology of coconut fiber 92

3.4.3 Surface morphology of pine wood 93

3.4.4 SEM analysis of pyrolyzed carbon 95

3.5 Nitrogen adsorption studies 96
CHAPTER IV
MICROSTRUCTURES AND PROPERTIES OF INDUSTRIAL CARBON AND GRAPHITE

Introduction 112

4.1 Commercial graphite 113

4.1.1 Physical properties 113

4.1.1.1 Densities of different grades of commercial carbon graphite samples 113

4.1.1.2 Porosity of various grades of graphite specimens 115

4.1.2 Optical microscopy of commercial carbon graphite material 117

4.1.3 Conductivity of commercial carbon graphite materials 121

4.1.4 Mechanical property 123

4.1.4.1 Rockwell hardness of industrial carbon graphite materials 123

4.2 Carbons processed to different conditions (Schutz Carbons) 124

4.2.1 Physical properties 125

4.2.1.1 Densities and % porosity of different grades of Schutz carbon 125
CHAPTER V

STUDIES ON SiC/CARBON REINFORCED PARTICULATE CARBON COMPOSITES

Introduction 140

1. Carbon-particulate composites (I) 141

5.1 Physical properties of carbon particulate composites (I) 141

5.1.1 Weight loss and volume shrinkage of carbon particulate composites (I) during heat treatment at 1000°C 144
5.1.2 Pyrolysis of phenolic resin to carbon char 147
5.1.3 Density and porosity of C-particulate (I) composites 147

5.2 Macro / Microstructures studies 150

5.2.1 Optical microscopy of C-particulate (I) composites 151
5.2.2 Scanning electron microscopy of C-particulate (I) composites 154

5.3 Mechanical properties 156

5.3.1 Rockwell hardness of C-particulate (I) composites heat treated 156
5.3.2 Compressive strength measurement 157

5.4 Electrical properties 159

5.4.1 DC electrical conductivity 159

II. Carbon-particulate composites (II) 161

5.5 Physical properties of carbon-particulate (II) composites 161

5.5.1 Weight loss and volume shrinkage of C-particulate (II) composites during carbonization 161

5.5.2 Density and porosity of C-particulate composites (II) 163

5.6 Macro / Microstructure studies 165

5.6.1 Optical microscopy of carbonized C-particulate composites (II) 166

5.6.2 Scanning electron microscopy of carbonized C-particulate composites (II) 168

5.7 Mechanical properties 170

5.7.1 Rockwell hardness of carbonized C-particulate composites (II) 170

5.7.2 Compressive strength measurement 171

5.8 Electrical properties (Bulk DC conductivity) 173

5.9 Conclusion 175

5.10 References 175

CHAPTER VI
CARBON FIBER REINFORCED CARBON MATRIX COMPOSITES

Introduction 179
6.1 Carbon fiber as reinforcement

I Continuous carbon fibre composites (CFC)

6.2 Physical property

6.2.1 Effect of CF volume fraction \((V_f)\) on density

6.3 Mechanical properties

6.3.1 Vickers Microhardness \((H_V)\)

6.3.2 Rockwell hardness \((H_{RR})\)

6.4 Macro / Microstrutural study

6.4.1 Optical microscopy

6.5 Electrical properties

6.5.1 DC electrical conductivity (bulk/volume)

II Chopped carbon fibre composites (CCF)

6.6 Physical property

6.6.1 Effect of filler loading on packing density of carbonized phenolic resin / CCF composites (CCCF)

6.7 Mechanical properties

6.7.1 Vickers Microhardness \((H_V)\)

6.7.2 Rockwell hardness \((H_{RR})\)

6.8 Macro / Microstructure studies

6.8.1 Optical microscopy

6.9 Electrical properties

6.9.1 DC electrical conductivity (bulk/volume)

6.10 Conclusion

6.11 References
CHAPTER VII

CONCLUSION AND SCOPE OF THE FUTURE WORK

7.1 Conclusions 204

7.2 Scope of the future work 210

LIST OF PUBLICATION AND PAPER PRESENTED IN

INTERNATIONAL AND NATIONAL CONFERENCE 211