LIST OF FIGURES

Fig. 1.1: Ragone plot
Fig. 1.2: Taxonomy of supercapacitors
Fig. 1.3: Applications of supercapacitors.
Fig. 1.4: The crystal structure of α-MnO₂ and β-MnO₂.
Fig. 1.5: The crystal structure of a) γ-MnO₂ with intergrowth of (1×1) and (1×2) tunnels b) δ-MnO₂ with 2D layered structure and c) λ- MnO₂ with spinel structure.
Fig. 1.6: Schematic representation of charge/ discharge mechanism of MnO₂ electrode.
Fig. 2.1: Electrophoretic deposition.
Fig. 2.2: TEM images displaying the morphology of α-MnO₂ synthesized hydrothermally at different times of a) 30 min b) 1h c) 24 h and d) 36 h.
Fig. 2.3: Plot showing the variation in the aspect ratio and diameter at different processing times.
Fig. 2.4: XRD pattern of the synthesized nanowires.
Fig. 2.5: a) HR-TEM showing inter-planar spacing along the growth direction and diameter and b) FFT analysis.
Fig. 2.6: a) The wire diameter size analysis and b) SEM image of eletrophoretically deposited layer of α-MnO₂ nanowires c) cross-sectional and d) AFM image of α-MnO₂ nanowires layer.
Fig. 2.7: a) TEM image and b) XRD spectrum of commercially obtained MnO₂ nanoparticle and c) SEM image of electrophoretically deposited nanoparticle.
Fig. 2.8: CV curves recorded at 50 mV s⁻¹ for nanowire-based MnO₂ in different electrolytes a) KOH, b) Na₂SO₄ and c) LiClO₄.
Fig. 2.9: CV curves recorded for a) nanowire-based MnO₂ and b) nanoparticulate MnO₂ at different scan rates and c&d) capacitance Vs scan rate curve of MnO₂ nanowire and nanoparticle respectively.
Fig. 2.10: CV curves recorded for a) nanowire MnO₂ at 1⁻¹ and 3000⁻¹ cycle b) nanoparticulate MnO₂ at 1⁻¹ and 1000⁻¹ cycle.
Fig. 2.11: SEM images of nanowire MnO$_2$ electrodes at the end of the 3000th cycle and (b) nanoparticulate MnO$_2$ electrodes after the 1000$^{\text{th}}$ cycle and (c) plot showing mass specific capacitance variation with respect to number of cycles for both electrodes.

Fig. 2.12: Bode plot representation of a) nanoparticulate MnO$_2$ and b) nanowire MnO$_2$.

Fig. 2.13: Discharge behaviour of a) MnO$_2$ nanoparticulate and b) nanowire at different discharge currents of 5 mA and 20 mA respectively using a 3 electrode system and inset shows the IR drop of both nanoparticulate and nanowire systems.

Fig. 2.14: a) Image of cylindrical energy storage unit made from thin film MnO$_2$ nanowire electrode and b) Self-discharge- behaviour of MnO$_2$ nanowires thin film electrode.

Fig. 3.1: SEM image showing the hierarchical mesoporous structure in PPM-10 hybrid sponges.

Fig. 3.2: SEM image showing the porous structure in PP sponges.

Fig. 3.3: SEM images of PPM-5 samples.

Fig. 3.4: SEM image showing the porous structure in PPM-20 samples.

Fig. 3.5: Schematic illustration showing the mechanism of formation of hierarchical pores in a) PP b) PPM-10 samples and c) PPM-20.

Fig. 3.6: Typical XRD spectrum of PPM sponges.

Fig. 3.7: EDAX analysis of PPM sponges.

Fig. 3.8: BET analysis of PPM-10 and PP sponges.

Fig. 3.9: TG analysis of PPM and PP samples.

Fig. 3.10: CV curves of PPM-10 in a) LiClO$_4$ and b) KOH electrolytes.

Fig. 3.11: CV curves of a) PP and MnO$_2$ in 0.1 M KOH electrolyte.

Fig. 3.12: a) CV curves PPM-5, PPM-10 and PPM-20 electrodes at 10 mV s$^{-1}$ scan rate and b) plot showing the relation between specific capacitance and wt% of MnO$_2$ in PPM.

Fig. 3.13: SECM spatial analysis of a) PPM and b) PP systems.

Fig. 3.14: Typical CV pattern of PPM-10 at different scan rates.

Fig. 3.15: Typical CV pattern of PP sponges at different scan rates.

Fig. 3.16: a) Cycling stability studies of PPM-10 and PP samples at 100 mV s$^{-1}$ and b) discharge profile of PPM-10 electrode at different discharging currents.

Fig. 3.18: Bode plots of a) MnO$_2$ system and b) PPM-10 sponges.
Fig. 4.1: a) TEM, b) diameter size distribution, c) XRD and d) HR-TEM (inset- SAED) of camphoric carbon nano-beads.

Fig. 4.2: a) Raman spectroscopy and b) XPS analysis of nano-beads derived from camphoric carbon.

Fig. 4.3: a) TEM b) HR-TEM (inset FFT) and c) diameter size distribution of α-MnO$_2$ nanowires synthesized hydrothermally.

Fig. 4.4: (a&b) typical TEM and XRD analysis respectively for MC sample (indicates the carbon phase) and c) typical SEM showing surface topography (inset–cross sectional image showing the thickness of the coating layer) of electrophoretically deposited MC-10 electrodes.

Fig. 4.5: CV curves of MC electrodes with different carbon content in a) NaOH, b) LiOH and c) KOH electrolytes and d) plot showing the variation of specific capacitance with carbon content.

Fig. 4.6: a) Plot of log i Vs log v derived from discharge curves of CV at different scan rates and b) Plot showing the dependence of slope ‘b’ (derived from linear fit of log i vs log v) as a function of cell voltage.

Fig. 4.7: a) The plots of $v^{1/2} i / v^{1/2}$ used to calculate the constants K_1 and K_2 at different potentials and sweep rates varied from 2—5 mVs$^{-1}$ and b) bar chart showing the percentage contribution of stored charge as a function of different scan rate.

Fig. 4.8: a) Linear voltammetry curves of CNT, graphene and nanocarbon derived from camphor and b) CV curves of composite electrodes made from 90wt% MnO$_2$ and 10 wt% of graphene/CNT/ nanocarbon.

Fig. 4.9: a) CV curves at different scan rates and b) capacitance Vs number of cycles.

Fig. 4.10: BET analysis of MnO$_2$ nanowires and MC-10 electrodes.

Fig. 4.11: Bode plot of a) MnO$_2$ nanowire and b) MC-10 electrode.

Fig. 4.12: Discharge curves of MC-10 electrodes at different discharge currents

Fig. 4.13: a) assembled button cell unit using MC-10 electrodes b) discharging curve at different discharging current c) cycling at 20 mA current and d) self-discharge profile of coin cell unit.