List of Figures

1.1 Basic principle of EDM 20
1.2 EDM System Components 22
1.3 The EDM flushing techniques 25
1.4 Axial view of EDM electrodes and resulting overcut in the workpiece 27
1.5 Characteristics of EDM electrode wear 27
1.6 Effect of current on EDM process 29
1.7 Effect of spark frequency on surface finish 29

2.1 General model of a process or system 39
2.2 Strategy of Efficient Experimentation 40
2.3 Data Generation and Data Analysis in Investigation 42
2.4 Geometrical Representation of Treatment Combinations 50
2.5 Blocking Arrangements 52

3.1 Flow Diagram Showing Different Paths in RSM 58
3.2 Central and non-Central Composite Design 65
3.3 The sequential nature of RSM 67
3.4 First order response surface and path of steepest ascent 69
3.5 Transformation of coordinates in to canonical coordinates 70
3.6 Contours for second order models with two independent variables 72

4.1 L4 Linear Graph 88
4.2 L8 Linear Graph 88

5.1 EDM Machine used for the experiments 93
5.2 Specimen and its Fixture 93
5.3 Bit map of the EDM machined surface of Carbon-Carbon Composite 96
5.4 Multiple graphs showing main effects of variables on EWR 99
5.5 Multiple graphs showing main effects of variables on MRR
5.6 Multiple graphs showing main effects of variables on Overcut

6.1 Path of steepest ascent for electrode wear rate
6.2 Path of steepest ascent for material removal rate
6.3 Path of steepest ascent for overcut

7.1 Comparison of OC for copper & Graphite electrodes with respect to V_g
7.2 Comparison of OC for copper & Graphite electrodes with respect to I_p
7.3 Comparison of OC for copper & Graphite electrodes with respect to T_{on}
7.4 Comparison of MRR for copper & graphite electrodes with respect to V_g
7.5 Comparison of MRR for copper & graphite electrodes with respect to I_p
7.6 Comparison of MRR for copper & graphite electrodes with respect to T_{on}
7.7 Comparison of EWR for copper & graphite electrodes with respect to V_g
7.8 Comparison of EWR for copper & graphite electrodes with respect to I_p
7.9 Comparison of EWR for copper & graphite electrodes with respect to T_{on}

8.1 Relative variation of OC for C-C composites with respect to V_g
8.2 Relative variation of OC for C-C composites with respect to I_p
8.3 Relative variation of OC for C-C composites with respect to T_{on}
8.4 Relative variation of MRR for C-C composites with respect to V_g
8.5 Relative variation of MRR for C-C composites with respect to I_p
8.6 Relative variation of MRR for C-C composite with T_{on} respect to
8.7 Relative variation of EWR for C-C composites with respect to V_g
8.8 Relative variation of EWR for C-C composites with respect to I_p
8.9 Relative variation of EWR for C-C composites with respect to T_{on}
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Comparison of OC for Carbonised, Graphitised C-C & Graphite w. r. to V_g</td>
<td>161</td>
</tr>
<tr>
<td>9.2</td>
<td>Comparison of OC for Carbonised, Graphitised C-C & Graphite w. r. to I_p</td>
<td>161</td>
</tr>
<tr>
<td>9.3</td>
<td>Comparison of OC for Carbonised, Graphitised C-C & Graphite w. r. to T_{on}</td>
<td>162</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison of MRR for Carbonised, Graphitised C-C & Graphite with respect to V_g</td>
<td>165</td>
</tr>
<tr>
<td>9.5</td>
<td>Comparison of MRR for Carbonised, Graphitised C-C & Graphite with respect to I_p</td>
<td>165</td>
</tr>
<tr>
<td>9.6</td>
<td>Comparison of MRR for Carbonised, Graphitised C-C & Graphite w. r. to T_{on}</td>
<td>165</td>
</tr>
<tr>
<td>9.7</td>
<td>Comparison of EWR for Carbonised, Graphitised C-C & Graphite w. r. to V_g</td>
<td>167</td>
</tr>
<tr>
<td>9.8</td>
<td>Comparison of EWR for Carbonised, Graphitised C-C & Graphite w. r. to I_p</td>
<td>167</td>
</tr>
<tr>
<td>9.9</td>
<td>Comparison of EWR for Carbonised, Graphitised C-C & Graphite w. r. to T_{on}</td>
<td>167</td>
</tr>
<tr>
<td>10.1</td>
<td>Relative variation of OC for C-C composites with respect to V_g</td>
<td>175</td>
</tr>
<tr>
<td>10.2</td>
<td>Relative variation of OC for C-C composites with respect to I_p</td>
<td>175</td>
</tr>
<tr>
<td>10.3</td>
<td>Relative variation of OC for C-C composites with respect to T_{on}</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>Relative variation of MRR for Carbon-Carbon composites w. r. to V_g</td>
<td>177</td>
</tr>
<tr>
<td>10.5</td>
<td>Relative variation of MRR for Carbon-Carbon composites w. r. to I_p</td>
<td>177</td>
</tr>
<tr>
<td>10.6</td>
<td>Relative variation of MRR for Carbon-Carbon composite w. r. to T_{on}</td>
<td>177</td>
</tr>
<tr>
<td>10.7</td>
<td>Relative variation of EWR for C-C composites with respect to V_g</td>
<td>179</td>
</tr>
<tr>
<td>10.8</td>
<td>Relative variation of EWR for C-C composites with respect to I_p</td>
<td>179</td>
</tr>
<tr>
<td>10.9</td>
<td>Relative variation of EWR for C-C composites with respect to T_{on}</td>
<td>180</td>
</tr>
</tbody>
</table>