In Chapter 3, an optimal pole assignment (OPA) theorem has been enunciated. Using this theorem optimal pole region (OPR) has been delineated. A recursive procedure has been used to carry out optimal pole assignment. At each recursion one or two poles have been assigned. In this chapter a method for multiple real pole assignment at each recursion has been developed. In this process, physical interpretation for Riccati equation solution matrix \(P \) has been given. An algorithm for multiple pole assignment has been presented. This has been followed by a numerical example.

4.1 LEMMA

When \(P_k \) (\(\leq m \)) poles are optimally assigned using OPA theorem, the leading principal minors \(P_{ii} \) of \(P_{KL} \) are directly proportional to pole shift.

Proof

The reduced order system matrices at kth recursion are

\[
A_{KL} = \begin{bmatrix}
 a_{11} & \beta_{12} & \beta_{13} & \cdots & \beta_{1p} \\
 0 & a_{22} & \beta_{23} & \cdots & \beta_{2p} \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
 0 & 0 & \cdots & 0 & \alpha_{pp}
\end{bmatrix},
\]
Then from (3.2) we have

$$P_{KL} = (B_{KL}B_{KL}^T)^{-1} (A_{KL} - \bar{A}_{KL})$$

(4.1)

From (4.1) we get

$$P_{11} = b_{11} (a_{11}-\bar{a}_{11}) > 0$$

(4.2)

and

$$p_{12} = b_{12} (a_{11}-\bar{a}_{11}) = b_{11}(\beta_{12} - \bar{\beta}_{12}) + b_{12}(\alpha_{22}-\bar{\alpha}_{22})$$

substituting for ($\beta_{12} - \bar{\beta}_{12}$) from this equation in (4.1) and simplifying
\[P_{22} = \left(\begin{pmatrix} b_{12} & \pi_{11} \\ \pi_{11} & p_{11} \end{pmatrix} \right)^2 - p_{12} + \frac{\Delta_{22}}{b_{11}} P_{11} (a_{22} - \bar{a}_{22}) \]

(4.3)

where

\[\Delta_{22} = (b_{11} b_{22} - b_{12}^2) > 0 \]

(4.4)

Now equations (4.2) and (4.3) are equations of straight line. Similarly it can be shown that the \(\bar{a}_{11} \) is directly proportional to \(p_{11} \). This has been illustrated in the Figure 4.1.

![Figure 4.1: Relation between principal minor and closed loop poles.](image)

Therefore principal minors of \(P_{KL} \) are directly proportional to pole shift.

This Lemma leads us to the following definition.
Definition

Since the leading principal minors of P_{kL} are proportional to pole shift in RSF plane, the algebraic Riccati equation solution matrix P is called pole shift matrix.

$P_k(\leq m)$ closed loop poles (\bar{p}_{ii}) are assigned progressively such that $P_{ii} > 0$ and Q_{ii} (leading principal minor of Q_{kL}) ≥ 0. This has been illustrated by a numerical example involving one recursion.

4.2 ALGORITHM FOR MULTIPLE POLE ASSIGNMENT

1) Transform A and B to RSF

$$A_0 = U_0^T A U_0$$
$$B_0 = U_0^T B$$

where U_0 is the unitary similarity transformation matrix that transforms A to RSF A_0

2) Choose q the number of recursions necessary to carry out pole assignment and the order in which the poles are to be assigned. Set $k=0$ and $\bar{A}_0 = A_0$

3) Set $k = k+1$

4) Obtain $A_k = U_k^T \bar{A}_{k-1} U_k$ and $B_k = U_k^T B_{k-1}$

5) Set $i = 0$

6) Set $i = i+1$ and choose $P_{ii} = a > 0$

7) Calculate p_{ii} by solving $P_{ii} = a$

8) Solve the simultaneous equations for P_{ii}, P_{i1}, P_{i2}, ..., P_{ii} and determine \bar{a}_{ii}

9) Draw the straight line joining a_{ii} and \bar{a}_{ii}. Choose desired \bar{a}_{ii} on this straight line and read P_{ii}

10) Determine p_{ii} from P_{ii}

11) If $i=1$ go to step (13) otherwise go to step (12)
12) Solve the simultaneous equations for p_{1i}, $p_{2i} ... p_{(i-1)i}$ and determine $\beta_{1i}, \beta_{2i}, \ldots \beta_{(i-1)i}$

13) Set $j = i$

14) Set $j = j + 1$

15) Calculate p_{ij} if $j = p_k$ go to step (16) otherwise go to step (14)

16) Check for Q_{ii}; if $Q_{ii} > 0$ go to step (17) or else put $\bar{a}_{ii} = \bar{a}_{ii} - b$ ($b > 0$), read p_{ii} on straight line and go to step (10)

17) If $i = p_k$ go to step (18) otherwise go to step (6)

18) Calculate K_{kL}

19) If $k = q$ go to step (20) otherwise go to step (3)

20) Calculate P, K, Q and \bar{A} in original system coordinates

4.3 ILLUSTRATIVE EXAMPLE

Consider

\[
\begin{bmatrix}
-4 & 2 & 1 \\
0 & -2 & 0 \\
0 & 1 & -1
\end{bmatrix}
\]

By RSF transformation we get

\[
A_0 = \begin{bmatrix}
-4 & -0.707 & -2.121 \\
0 & -2 & -1 \\
0 & 0 & -1.0
\end{bmatrix}, \quad B_0 = \begin{bmatrix}
2.0 & 0 & 1 \\
-0.707 & 0 & -0.707 \\
0.707 & 1.414 & 2.121
\end{bmatrix}
\]
where

\[
U_0 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0.707 & -0.707 \\
0 & 0.707 & 0.707
\end{bmatrix}
\]

The open loop poles are at -4, -2, -1 and \(q = 1\).

Since \(U_1 = I_3\) the identity matrix we have, \(A_{1L} = A_1 = A_0\) and \(B_{1L} = B_1 = B_0\). To shift the o.l. pole at -4, choose \(a = -0.5\).

\[
P_{1L} = (B_{1L}P_{1L})^{-1} (A_{1L} - \bar{A}_{1L})
\]

\[
= \begin{bmatrix}
3 & 7.707 & 0.707 \\
7.777 & 22.5 & 2.5 \\
0.707 & 2.5 & 0.5
\end{bmatrix}
\begin{bmatrix}
-4 - \bar{a}_{11} & -0.707 - \bar{a}_{12} & 2.121 - \bar{a}_{13} \\
0 & -2 - \bar{a}_{22} & -1 - \bar{a}_{23} \\
0 & 0 & -1 - \bar{a}_{33}
\end{bmatrix}
\]

Now \(P_{11} = P_{1L} = 3(-4 - \bar{a}_{11}) = 0.5\) which implies \(\bar{a}_{11} = -4.167\).

A straight line is drawn through the points -4 and -4.167 as in Figure 4.2.

Choosing \(\bar{a}_{11} = -4.333\), from Figure 4.2 we get \(P_{11} = P_{11} = 1\). Then

\[
P_{1L} = \begin{bmatrix}
1 & 2.593 & 0.236 \\
2.593 & P_{22} & P_{23} \\
0.236 & P_{23} & P_{33}
\end{bmatrix}
\], \(P_{11} > 0\)
Fig. 4.2: CLOSED LOOP POLES OF ILLUSTRATIVE EXAMPLE

and

\[Q_{1L} = \begin{bmatrix} 8.333 & 17.128 & 1.728 \\ 17.128 & q_{22} & q_{23} \\ 1.728 & q_{23} & q_{33} \end{bmatrix} , \quad Q_{11} > 0 \]

Now to shift the open loop pole at -2, \(P_{22} = 0.5 \) gives

\[P_{22} = 7.222 \text{ and } \bar{a}_{22} = -2.214 \]

A straight line is drawn through -2 and -2.214 in Figure 4.2. Choosing \(\bar{a}_{22} = -2.548 \), we have \(P_{22} = 1.278 \) and \(P_{22} = 8.0 \). Solving for \(P_{12} \), we have \(\bar{P}_{12} = -0.151 \). Thus,

\[P_{1L} = \begin{bmatrix} 1 & 2.593 & 0.236 \\ 2.593 & 8.0 & 0.976 \\ 0.236 & 0.976 & P_{33} \end{bmatrix} , \quad P_{22} > 0 \]
Finally to shift the o.l. pole at -1, $P_{33} = 0.5$, $p_{33} = 0.551$, and $a_{33} = -3.739$.

Choosing $\bar{a}_{33} = -2.681$ on the straight line joining the points -1 and -3.739 in Figure 4.2, we get $P_{33} = 0.307$ and $p_{33} = 0.4$.

Solving for p_{13} and p_{23} we get $p_{13} = 1.599$ and $p_{23} = -0.676$. Then

$$ P_{1L} = \begin{bmatrix} 1 & 2.593 & 0.236 \\ 2.593 & 8.0 & 0.976 \\ 0.236 & 0.976 & 0.4 \end{bmatrix}, \quad P_{33} > 0 $$

and

$$ Q_{1L} = \begin{bmatrix} 8.333 & 17.128 & 1.728 \\ 17.128 & 38.607 & 5.999 \\ 1.728 & 5.999 & q_{33} \end{bmatrix}, \quad Q_{33} > 0 $$

We thus have

$$ \bar{A}_{1L} = \begin{bmatrix} -4.333 & -0.151 & 1.599 \\ 0 & -2.548 & -0.676 \\ 0 & 0 & -2.681 \end{bmatrix} $$
Therefore

\[K_{1L} = B_{1L}^T P_{1L} = \begin{bmatrix} 0.333 & 0.219 & 0.064 \\ 0.333 & 1.380 & 0.566 \\ -0.333 & -0.993 & 0.394 \end{bmatrix} \]

Now referred to original system coordinates

\[\bar{A} = \begin{bmatrix} -4.333 & 1.024 & 1.238 \\ 0 & -2.952 & -0.405 \\ 0 & 0.271 & -2.276 \end{bmatrix} \]

\[K = \begin{bmatrix} 0.333 & 0.2 & -0.109 \\ 0.333 & 1.376 & -0.576 \\ -0.333 & -0.424 & 0.981 \end{bmatrix} \]

\[P = \begin{bmatrix} 1.0 & 1.2 & -1.667 \\ 1.2 & 5.176 & -3.8 \\ -1.667 & -3.8 & 3.224 \end{bmatrix} \]

\[Q = \begin{bmatrix} 8.333 & 13.333 & -10.889 \\ 13.333 & 26.418 & -18.188 \\ -10.889 & -18.188 & 14.420 \end{bmatrix} \]