Table of Contents

Preface i
Acknowledgement ii
Abstract iii
Nomenclature v
List of Tables viii
List of Figures x

1 Introduction 1
1.1 Conventional Design vs. Computer Aided Design (CAD) 1
1.2 Objectives 3
1.3 Outline of the work 4
1.3.1 Part I Optimum Design of Machine Elements 4
1.3.1.1 Case I Optimum Design of Column of pillar Type Drilling Machine 4
1.3.1.2 Case II Optimum Design of High-speed Short Journal Bearing 4
1.3.1.3 Case III Optimum Design of Helical Gear of a Heavy Duty Machine 5
1.3.2 Part II Optimum Selection using MADM methods 5
1.3.2.1 Case I Optimum Selection of Material for Journal Bearing 5
1.3.2.2 Case II Optimum Selection of Mechanical Drive 5
1.4 Methodology 6
1.5 Limitations of the work 6

2 Engineering Optimization Techniques 7
2.1 Mathematical Programming Techniques 7
2.2 Evolutionary Techniques 8
2.3 Procedural Steps of Evolutionary Methods 9
2.3.1 Genetic Algorithm (GA) 9
2.3.2 Particle Swarm Optimization (PSO) Algorithm 13
2.4 Decision Making Methods 14
2.5 Procedural steps of Decision Making Methods 15
2.5.1 Simple Additive Weight (SAW) 16
2.5.2 Analytic hierarchy Process (AHP) 18
2.5.3 Technique of Order Preference by Similarity to Ideal Solutions (TOPSIS) 21
2.5.4 Modified TOPSIS 25
2.5.5 Compromise Ranking (VIKOR) 26
3 Literature Review 29
3.1 Optimum Design of Machine Elements 29
 3.1.1 Optimum Design of Machine Tool Structures 29
 3.1.1.1 Optimum Weight of Structural Elements 29
 3.1.1.2 Optimum Stiffness and rigidity 30
 3.1.1.3 Miscellaneous Applications 30
 3.1.2 Optimum Design of Journal Bearings 31
 3.1.3 Optimum Design of Gears 35
 3.1.3.1 Optimum Volume 35
 3.1.3.2 Multi-objective Optimization 37
 3.1.3.3 Miscellaneous Applications 38
 3.1.4 GA and PSO Applications 38
3.2 Optimum Selection using MADM methods 41
 3.2.1 Optimum selection of Material 41
 3.2.2 Optimum selection of Flexible Manufacturing System 44
 3.2.3 Optimum selection of Robotic Components 44
 3.2.4 Optimum selection of Miscellaneous Systems 44
4 Optimum Design of Machine Elements 47
 4.1 Optimum Design of Steel Box Column for a Pillar Type Drilling Machine 47
 4.1.1 Objective function and constraints 47
 4.1.2 Methods of Solution 49
 4.1.2.1. Quasi Newton Method 49
 4.1.2.2. Genetic Algorithm (Binary Valued Coding) 50
 4.1.3 Comparison of results 59
 4.2 Optimum Design of High-speed Short Journal Bearing 60
 4.2.1 Objective Function and Constraints 61
 4.2.2 Methods of solution and development of codes 65
 4.2.3 Experimentation and results 65
 4.2.4 Comparison of performance 65
 4.3 Optimum Design of Helical Gear Pair of a Heavy Duty Machine 72
 4.3.1 Design methodology 72
 4.3.2 Objective Function and Constraints 79
5 Optimum Selection using MADM Methods 87
 5.1 Optimum Selection of Material for Journal Bearing 87
 5.1.1 Material requirements for journal bearing 88
 5.1.2 Materials used for Journal bearing 89
 5.1.3 Identification of attributes and alternatives 92
 5.1.4 Development of data matrix 92
5.1.5 Development of codes and application of MADM methods

5.1.5.1 SAW method 93
5.1.5.2 AHP method 93
5.1.5.3 TOPSIS method 94
5.1.5.4 Modified TOPSIS method 95
5.1.5.5 VIKOR method 95

5.2 Optimum Selection of Mechanical Drive 101
5.2.1 Introduction to mechanical drives 101
5.2.2 Requirements for mechanical drive 101
5.2.3 Identification of attributes and alternatives 101
5.2.4 Development of data matrix 102
5.2.5 Development of codes and application of MADM methods 102
 5.2.5.1 SAW method 103
 5.2.5.2 AHP method 104
 5.2.5.3 TOPSIS method 104
 5.2.5.4 Modified TOPSIS method 104
 5.2.5.5 VIKOR method 105
5.2.6 Comparison of results of MADM methods 105

6 Conclusions and Future Scope 112
6.1 Conclusions 112
6.2 Future scope 114

Research Publications 115

References 116

Appendices 127
A Sample MATLAB Code for GA (Column) 127
B Sample MATLAB Code for PSO (Gear) 131
C Sample MATLAB Code for Exhaustive Search (Column) 134
D Sample MATLAB Code for SAW method (Material Journal Bearing) 135
E Sample MATLAB Code for AHP method (Material Journal Bearing) 137
F Sample MATLAB Code for TOPSIS method (Material Journal Bearing) 140
G Sample MATLAB Code for Modified TOPSIS method (Drive Selection) 143
H Sample MATLAB Code for VIKOR method (Drive Selection) 145
I Plagiarism Report for thesis 147