CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 GENERAL</td>
<td></td>
</tr>
<tr>
<td>1.1 LINK VOLUME MODELS</td>
<td>1</td>
</tr>
<tr>
<td>1.2 A STATE-OF-ART REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>1.3 NEED FOR GENERATION OF GOOD SEED MATRICES</td>
<td>3</td>
</tr>
<tr>
<td>1.4 CONDUCT OF PHYSICAL SURVEYS</td>
<td>4</td>
</tr>
<tr>
<td>1.5 SPECIFICATION OF URBAN SPATIAL STRUCTURE</td>
<td>5</td>
</tr>
<tr>
<td>1.6 ACCESSIBILITY SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>1.7 DYNAMIC URBAN STRUCTURE SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>1.8 HYPOTHESES FOR TRAVEL MOVEMENTS AND DEVELOPMENT OF COMPUTER PROGRAM</td>
<td>6</td>
</tr>
<tr>
<td>1.9 SCOPE AND OBJECTIVE OF THE THESIS</td>
<td>7</td>
</tr>
<tr>
<td>1.10 THESIS ORGANIZATION</td>
<td>8</td>
</tr>
</tbody>
</table>

CHAPTER 2 ESTIMATION OF O-D MATRIX THROUGH TRAFFIC VOLUME COUNTS - REVIEW OF LITERATURE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 GENERAL</td>
<td></td>
</tr>
<tr>
<td>2.1 A STATE-OF-ART SUMMARY</td>
<td></td>
</tr>
<tr>
<td>2.1.1 GRAVITY FORMULATION APPROACH</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2 NETWORK EQUILIBRIUM APPROACH</td>
<td>18</td>
</tr>
<tr>
<td>2.1.3 ENTROPY MAXIMISATION/INFORMATION MINIMISATION APPROACH</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4 BAYESIAN STATISTICAL APPROACH</td>
<td>19</td>
</tr>
</tbody>
</table>
2.1.5 MULTIOBJECTIVE FORMULATION 20
2.1.6 SELECTION OF TECHNIQUE/TECHNIQUES FOR TRAVEL DEMAND ESTIMATION 21

2.2 ALGORITHM FOR THE ESTIMATION OF O-D MATRIX USING BAYESIAN APPROACH 22

2.3 GENERATION OF REALISTIC SEED MATRICES 23

2.4 SPECIFICATION OF URBAN SPATIAL STRUCTURE 25
 2.4.1 DEFINITION OF URBAN STRUCTURE 25
 2.4.2 QUANTIFICATION OF URBAN SPATIAL STRUCTURE 26
 2.4.3 TRIP LENGTH FREQUENCY DISTRIBUTION 28

2.5 ACCESSIBILITY 29
 2.5.1 ACCESSIBILITY AS A TOOL FOR ESTIMATION OF TRAVEL DEMAND 30

2.6 TEMPORAL TRAVEL DEMAND 31

2.7 IDENTIFICATION OF THE PROBLEM 31

2.8 CONCLUSIONS 33

Appendix 2.1 34

CHAPTER 3 PILOT STUDIES IN LINK VOLUME MODELLING

3.0 GENERAL 36

3.1 CHOICE OF STUDY AREA 36

3.2 DESCRIPTION OF STUDY AREA 37
 3.2.1 CITY BUS TRANSPORT SERVICE 37

3.3 SURVEYS 40
 3.3.1 HOME INTERVIEW 40
 3.3.2 GROUND COUNTS 40
Chapter 3.4 Data from Secondary Sources

3.4.1 Surrogates for Trip Productions and Attractions

3.4.2 Trip Ends

3.4.3 Travel Characteristics

Chapter 3.5 Pilot Studies - Estimation of Travel Demand through Entropy Maximisation/Information Minimisation Approach

3.5.1 Generation of Seed Matrices

3.5.2 Computer Package - NiPTac-NODIAC Family of Models

3.5.3 Hypotheses of Travel Movements

Chapter 3.6 Inputs and Outputs of NiPTac-NODIAC Package

3.6.1 Inputs to the NiPTac Package

3.6.2 Output from the NiPTac Package

3.6.3 Inputs to the NODIAC Package

3.6.4 Output from the NODIAC Package

Chapter 3.7 Validation of the Travel Demand Models

3.7.1 Link Volume Comparison

3.7.2 Trip Length Frequency Comparison

3.7.3 Trip End Comparison

Chapter 3.8 Conclusions

Chapter 4 Demand Estimation with Spatial Specifications

4.0 General

4.1 Description of the Spatial Structure for the Study Area
4.1.1 LOCATION OF TRIVANDRUM AND ITS HISTORICAL IMPORTANCE 60
4.1.2 POPULATION AND EMPLOYMENT PARTICULARS 61
4.1.3 LAND USE DESCRIPTION 67
4.1.4 TRAVEL CHARACTERISTICS 70
4.1.5 CLASSIFICATION OF ZONES INTO ACTIVITY AND NONACTIVITY ZONES 73
4.1.6 OPERATIONAL RANGES FOR VARIOUS CATEGORIES OF ZONES 74
4.2 DEVELOPMENT OF EDETUSS PROGRAM 76
 4.2.1 VALIDATION BY EDETUSS 78
 4.2.2 INPUTS AND OUTPUTS OF EDETUSS 78
4.3 TRAVEL DEMAND ESTIMATION THROUGH URBAN STRUCTURE SPECIFICATION 78
4.4 SUPPLY ACCESSIBILITY 81
 4.4.1 GENERATION OF SEED MATRIX TO REFLECT ACCESSIBILITY VIRTUE 84
 4.4.2 DEVELOPMENT OF TRAVEL DEMAND WITH ACCESSIBILITY SPECIFICATION 86
4.5 CONCLUSIONS 86

CHAPTER 5 DEMAND ESTIMATION WITH BOTH SPATIAL AND TEMPORAL SPECIFICATIONS

5.0 GENERAL 90
5.1 GENERATION OF DATA FOR BAYESIAN STATISTICAL APPROACH 91
5.2 DEVELOPMENT OF COMPUTER PROGRAM FOR EXPERIMENTATION 91
5.3 STUDY ON DISTRIBUTION OF DEMAND RATIOS 93
5.4 ESTIMATION OF TEMPORAL TRAVEL DEMAND 96
 5.4.1 SEQUENCE OF EXPERIMENTATION 96
5.5 VALIDATION OF THE TEMPORAL TRAVEL DEMAND MODELS 96
5.6 FURTHER EXPERIMENTATION IN THE MODEL CALIBRATION 100
5.7 CONCLUSIONS 107

CHAPTER 6 SALIENT FEATURES OF EDETUSS AND APPLICATIONS 109

6.0 GENERAL 109
6.1 SALIENT FEATURES OF EDETUSS 109
6.2 PROPOSED APPLICATIONS 110
 6.2.1 SCHEDULING 111
 6.2.2 ROUTE RATIONALIZATION 111
 6.2.3 PLANNING FOR COMPREHENSIVE TRANSPORTATION SYSTEM 113
 6.2.4 SITING OF NEW TERMINUS 114
6.3 CONCLUSIONS 114

CHAPTER 7 SUMMARY, CONCLUSIONS AND SCOPE FOR FURTHER WORK 115

REFERENCES 123