CHAPTER I
INTRODUCTION

After the introduction of dimethylglyoxime for the detection and determination of nickel by Tschugaef1 use of complexing agents in inorganic analysis has become prominent. An enormous number of organic reagents were used as complexing agents in inorganic analysis for both qualitative and quantitative determinations. Publication of a large number of monographs, reviews and books2-21 and increase in their number from time to time is a clear indication of the interest shown in this field.

The word Chelate (Chele = Claw) was first coined by Morgan and Drew22. The reactivity of the organic reagents was explained by Werner23 in his "Theory of Complex Compounds" in 1891. Using the electronic theory of valency, the trial and error methods previously employed for the prediction of chelates were eliminated.

The coordination of a metal ion and a reagent molecule can be compared with a reaction between a Lewis acid and a Lewis base i.e., metal being in the center and number of coordinating groups surrounding it. These groups could be either charged or neutral molecules containing atoms with one or more lone pairs of electrons. The coordinating
ligands may be unidentates or polydentates. When a ring is formed keeping the metal ion as a part of the complex, such complexes are called chelate compounds. The atoms like oxygen, nitrogen and sulphur of the coordinating groups with lone pairs of electrons forms the complexes more favorably. Some of the important coordinating groups (ligand) were given below.

Carboxyl
\[-\text{C} = \text{O} \]

Sulphonic
\[-\text{S} = \text{O} \]

Arsonic
\[-\text{As} = \text{O} \]

Enolic
\[-\text{C} = \text{C}_2 - \text{C} \quad \Leftrightarrow \quad -\text{C} = \text{C}_1 - \text{C}_1 \]

Phenolic
\[-\text{C} = \text{O} \]

Thiophenolic
\[-\text{C} - \text{S} \]

Oxime
\[=\text{N} - \text{O} \quad \Leftrightarrow \quad \text{N} - \text{H} \]

Semicarbazone
\[=\text{N} - \text{N} \quad \text{CO} \quad \text{NH}_2 \]

Thiosemicarbazone
\[=\text{N} - \text{N} \quad \text{CS} \quad \text{NH}_2 \]

Hydrazone
\[=\text{N} - \text{NH}_2 \]

Phenylhydrazone
\[=\text{N} - \text{NH} \quad \text{C}_6 \quad \text{H}_5 \]

2-Hydroxy-1-Acetonaphthone oxime is used in the present investigations which is a derivative of 2-hydroxy-1-acetonaphthone. A brief review of the use of O-hydroxy carbonyl compounds and oximes as analytical reagents is presented here.
0-Hydroxy carbonyl compounds

These compounds are an important group of organic reagents which form a stable six membered ring with the metal ions. Many types of compounds of this group, like hydroxylaldehydes, hydroxyketones, o-hydroxy quinones derived from anthracene, benzene or naphthalene, 5-hydroxy-2-pyrones have been introduced as analytical reagents. In these compounds generally the phenolic hydrogen is substituted and the oxygen of the carboxyl group takes part in the coordination.

0-Hydroxy aldehydes

Ettling has introduced salicylaldehyde for the qualitative and quantitative analysis of copper and nickel. Duke has reported that the compound and its 5-nitro, 5-bromo and 3,5-dibromo derivatives react with different metal ions in aqueous and nonaqueous solutions giving stable metal complexes. Conducometric, turbidimetric and spectrophotometric methods for the analysis of various ions have been reported.

Nee and Rao reported that boric acid forms complexes with salicylaldehyde, P-resorcylicaldehyde, 4-methoxy-2-hydroxy benzaldehyde and benzoyl phloroglucinaldehyde. P-Resorcylic aldehyde was used for copper and nickel and 2-hydroxy-1-naphthaldehyde for the gravimetric
determination of copper which gave coloured complexes. 2-Hydroxy-1-naphtaldehyde was used for trace analysis of magnesium37 and beryllium38. Chelate compounds of boron and o-hydroxy carbonyl compounds39 were also reported by Shibazaki.

O-Hydroxy ketones

Like aldehydes, ketones have also been used for inorganic analysis: Nenki and Sieber40 used 2,4-dihydroxy acetophenone for the determination of ferric iron. The same reagent was used by Ramanujan41,42 for the gravimetric and volumetric determination of copper. Germanium was analysed by Raju and Rao43 using the same reagent by fluorimetry. Neelakantam and Rao reported several reagents such as 2,4-dihydroxy acetophenone, 2,6-dihydroxy acetophenone, L-methoxy-2,4-dihydroxy acetophenone and 2-methoxy-3,6-dihydroxy acetophenone for the determination of boric acid34. O-hydroxy acetophenone was used for the determination of copper and nickel44. Nickel and titanium45 were also determined by the reagent Perrin44, Patel and Patel46 reported stability constants of the above complexes. Various metal ions were determined by 2,4-dihydroxy propiophenone, butyrophenone47 and 2-hydroxy-3-methyl acetophenone -4-methyl48 and 5-methyl acetophenone49 2,3,4-trihydroxy acetophenone were found useful for the gravimetric determination of tantalum50. Dhar and Jain51 has reported the
composition of the U (vi), V (v) and Fe (iii) complexes of the reagent, 5, 6-dibromo gallalacetophenone was used by Sane52 et al for the spectro photometric determination of Ti (iv) and V (v).

\textbf{O-Hydroxy acids}

Salicylic acid53-61 was used for the determination of many metals. Holleck62 has studied its europium complex for its polarographic behaviour. Salicylic acid63 was also used for the separation of titanium from niobium and tantalum. It was also used in the separation of Th (iv) from U (vi)64. Stability constants of these complexes were reported by several workers65-67.

Iron complexes of substituted salicylic acids were studied by Park68. Crystalline precipitates of potassium, magnesium and ammonium69 were prepared by using 1-hydroxy-2-naphthoic acid. Thorium and zirconium70 were also determined by using the same reagent by Agarwal and Mehrotra. P-resorcylic acid71 has been used for the determination of uranium and zirconium and separation of thorium72 from zirconium and uranium. Same reagent was used for the gravimetric73 determination of mercury(II) and spectrophotometric determination74 of iron and aluminum75. Fluorescent colour reactions were studied using salicylic acid and its derivatives. Fluorimetric determination of some other metals
were carried out by Rao and Neelakantam76 using these reagents. Azodye derivatives77 of O-hydroxy acids were examined for the detection of beryllium and aluminium.

O-Hydroxyquinones

5-Hydroxy-1,4-naphthaquinone was used for the gravimetric and potentiometric determination of copper78. 5,8-Dihydroxy-1,4-naphthaquinone79 was used for the determination of aluminium and beryllium80-82.

O-Hydroxy anthraquinones

Characteristic colour reactions of alizarin sulphonic acid with hafnium and zirconium83 was used for their estimation. Zirconium84 was determined using 1,2,4,5,8-Penta hydroxy anthraquinone and purpurin85. Orthohydroxy quinone derivatives were utilised for the indirect estimation of fluoride by bleaching their coloured complexes. Beryllium-quinizarin was estimated by spectrophotometric and fluorometric techniques by White et al86. Babko87 studied the composition of the complex with quinizarin by colorimetry. Colour reactions of hydroxy anthroquinone with aluminium and gallium88,89, indium and scandium90 were also reported.

O-Hydroxy-γ-pyrones.

Morin has been used for the detection91 and determination92 of aluminium. Aluminium was masked in the titration of gallium and indium with complexone(III). Morin has also been
used in the detection of Ti(iv)93 and U(vi)94 and colourimetric determination of Mo(vi)95 and U(VI)96. An isomer of morin i.e., quercetine was used for the detection by spotttest of uranium and iron. It was also used for the determination of gallium and indium97, thorium98, iron99 and titanium100. Kojicacid was used for the determination of iron(III)101, germanium102, zirconium and iron, thorium and molybdenum103 were determined using purpurgallin. Dutt and Singh104 have used this reagent for the determination of thorium, cerium, zirconium, molybdenum, lead(II) and a number of elements gravimetrically.

O-Hydroxy carbonyl compound derivatives were found to be more reactive and sensitive of the reagents. Oximes, semicarbazones and thiosemicarbazones are some of the important derivatives which increase reactivity and sensitivity.

A brief review of the analytical methods reported with the oximes was presented below.

Oximes as analytical reagents

O-Hydroxvoximes usually form chelates with the metals by replacement of the hydrogen atom of the −OH group and by coordination of the nitrogen atom of the oxime group. oximes can be broadly classified into four categories:
1. orthodioximes
2. orthohydroxy aromatic oximes
3. acyloinoximes
4. monoximes of diketones

1. Orthodioximes

Some of the dioximes extensively used as analytical reagents were given below.

a) Dimethyglyoxime:

This was discovered by Tschugaeff in 1905 and was used by Brunk105-109 for the determination of nickel. Dioximes in general react with nickel to form red precipitate. They will react generally in three ways

1. Through the coordination of \(-\text{NOH}\) groups by the nitrogen atoms present in the neutral conditions

2. Through salt formation using one \(-\text{NOH}\) group and through coordinate linkage with the other \(-\text{NOH}\) group, i.e., as mono basic acid.

3. Through salt formation using both \(-\text{NOH}\) groups either with or without coordination of their Nitrogen atoms i.e., as dibasic acid.

b) L-Benzil dioxime:

This was first used by Tschugaeff1 for the detection of nickel. The compound was used for the confirmatory tests
for Nickel in several analysis.110-111 This was used as a gravimatic reagent for nickel by Attack112-114 and many others. Fairhall115 has determined nickel in biological samples with this reagent.

c. Nioxime:
This is a cyclic analogue of Dimethyl glyoxime prepared by Wallach116-118 for the determination of palladium. Nickel and palladium were gravimetrically determined by Votar, Banks and Diehl119.

d. Alpha-furildioxide:
This reagent was proposed by Macnair120 and used by Soul121 for the gravimetric determination of nickel. It formed a red precipitate with nickel in ammoniacal medium. Ogburn122 has used the reagent for the separation and determination of platinum metals. Reed and Banks123 have used the reagent for the gravimetric determination of palladium.

e. Benzoylmethylglyoxime:
This is a potential reagent for the determination of palladium. Durdik124 determined palladium in jewelry metals. Grissolett and Servigin125 used it for the gravimetric determination of palladium in hydrochloric acid medium. Holzer126 stated that this is a more useful reagent than dimethylglyoxime for the determination of palladium.
f. Oxalene diamidoxime:
Nickel127-129, was detected and determined by using this reagent. Palladium was determined by Dasgupta130 gravimetrically.

2. Orthothyroxy aromatic oximes.
a. Salicylaldoxime: This oxime acts as a monobasic acid where the phenolic hydrogen will be replaced. Ephraim131 has detected copper and determined it gravimetrically using this reagent. The mechanism of reaction was confirmed by the absence of similar reaction with isomeric methylesters of salicylaldoxime by Fiegl. Bandi132 used this reagent for the determination of copper,133,134 nickel,135 palladium,136,137 bismuth138 and iron139. Tougarinoff140 has developed an indirect titrimetric method for the determination of copper. Furman and Flagg141, developed a bromate-arsenite method for the determination of copper.

b. Resorcylicaldoxime
This reagent was first introduced by Chain142 for the detection and colorimetric determination of iron. Mukharjee143 used it as a a gravimetric reagent for copper and nickel.

c. \textit{L}-Furfuraldoximes: Formation of an yellow precipitate of palladium with the reagent was used for the gravimetric determination of the metal by Hayes and Hayes and
d. Resaacetophenoneoxime: Neelakantam and Sitaraman145 have used this reagent for the colorimetric determination of Ferric Iron at pH 3.6 to 7.0. It was also used for the photometric and colorimetric determination of iron and uranium respectively146,147. This was also employed for the determination of many metals148-151. Seshagiri152 reported physico-chemical studies on copper, nickel and palladium complexes with this reagent. Halder and Trivedi153 has utilised 5-nitro resaacetophenoneoxime for the complex study of nickel and copper.

e. Gallacetophenone oxime: Various metal Ions were determined by gravimetric, amperometric, spectrophotometric methods by Adinara-yana Reddy154.

f. 2-Hydroxy-1-naphthaldoxime: Endo and Mashima155 determined copper, nickel and cobalt gravimetrically in acid medium. Rajareddy156 used this as a photometric reagent for the determination of uranium, palladium and titanium. SeshadriNaidu and Raghava Naidu157,158 utilised this reagent for the determination of palladium and titanium. Physico-chemical aspects of the oxime and several of its metal chelates were also studied159,160.
g. Salicylamidoxime: Copper, nickel and palladium were determined by Bandhopadhyay and Ray161 using this reagent.

h. 0-Hydroxy acetophenoneoxime: Copper, nickel and titanium were determined by Poddar162 gravimetrically by using this reagent. Ingle and Khanolkar163,164 studied the complexes of this oxime and its substituted derivatives. This was used as an indicator for the direct titration of ferric iron165.

i. Respropiophenoneoxime: Nickel was determined by Dave and Patel166 using this reagent.

j. 2-Hydroxy-5-methylpropiophenoneoxime: Prakash Dutt and Singh167,168 employed this reagent for the determination of copper, nickel, cobalt and titanium.

k. 2-propionyl-l-naphthaldoxime: Tambat and Merchant169 used this compound for the determination of copper.

l. O-vanillinoxime: Goel et al170 used this reagent for the gravimetric determination of copper and nickel.

m. Peonoloxime: Vanadium, palladium, copper, titanium and nickel were determined by Raja Reddy171 using this reagent. He also developed an indirect volumetric method using this reagent for the determination of copper, nickel, titanium and iron III. Copper, nickel and palladium were also determined by amperometry. Physico chemical studies of the oxime and
its metal chelates was reported by Suresh Babu et al.172,173

n. 2-hydroxy-3-chloro-5-methylacetophenone oxime: Naik et al.174 used this reagent for the determination of copper.

3. Acyloinoximes: The functional groups of these compounds is (OH)-C(OH)-C(NOH)-. They form green water soluble complexes with cupric salts. Feigl175 studied a number of oximes and found that the above group is specific for copper, irrespective of the R and R' radicals. Out of many acyloinoximes only L-benzoinoxime is the most important from analytical point of view.

Molybdate176 and tungstate177 ions were determined gravimetrically in acidic solutions. Hoenes and Stones178 found that this reagent gave an yellow precipitate with vanadium of composition 1:2. The precipitate was always contaminated with excess of the reagent and therefore the complex was extracted with chloroform and determined colorimetrically.

IV. Monoximes of diketones: These compounds possess the characteristic functional group -CO-C(NOH)- and have an ability to form inner complexes of blue colour with metal ions. The group is also found in many other compounds like \textit{L-nitroso-β-naphthol} and \textit{o-nitrosophenol} in which the two carbon atoms are a part of the ring.
a) **Iso nitroso-3-phenylpyrozolone**: Hovorka179 used this reagent for the determination of copper.

b) \textit{\textalpha}-Isonitroso-\textbeta-oximido acetoacitanilide:} Dave and Talati180 used this reagent for the determination of copper, nickel and palladium gravimetrically.

c. **Methyl Phenyl Pyrazoloneoxime**: Popa et al181 has used this reagent for the determination of copper gravimetrically.

d. **Oximidobenzotetronic acid**: Manku et al182 had separated and determine palladium and cobalt using the reagent.

e. **N-\textbeta-naphthylooxamic acid**: Tandon, Gupta and Omprakash168 determined copper with this reagent.

f. **Benzimidazol-2-carboxylic acid**: Ray, Kanakendu and Poddar183 used this reagent for the determination of copper and palladium.
References

1. Tschugaeff, L., Ber., 38, 2520, 1905

52. Sane, R. J., Deodhar, K. D., Talati, P. N. and Burkula, V. S., Ibid, 55, 511 1978.
57. Vanzij, P. C., Pharm. Week. blad., 58, 698 1921.
439; C.A., 57, 1844 1962.
63. Moeller, E., "Treatise on qualtitative inorganic Analysis", P. 504.
71. Dasgupta, P.N., Ibid., 6, 855 1929.

120. Macknair, D.S., Ann. 258, 226 1890.
132. Feigl, F. and Bondi, Berg., 64, 2819 1931.
152. Seshagiri, V., Ph.D. Theses, Sri Venkateswara University, Tirupathi, India 1971.
175. Feigl, F., Sridhar, G. and Singer, O., Ber. 58, B, 329 1925.