LIST OF FIGURES

<table>
<thead>
<tr>
<th>Plate/Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.1</td>
<td>First Diesel Engine</td>
<td>10</td>
</tr>
<tr>
<td>Plate 2.2</td>
<td>Rudolph Diesel</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Pressure vs. Crank Angle at 3.88 mg per cycle [63]</td>
<td>65</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Pressure vs. Crank Angle at 5 mg per cycle [63]</td>
<td>66</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Pressure vs Crank Angle for 6.11 mg per cycle [63]</td>
<td>66</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Pressure vs Crank Angle at 7.22 mg per cycle [63]</td>
<td>67</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Variation of Combustion Efficiency and Exhaust Temperature with Air-Fuel Ratio [82]</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Variation of Oxygen Concentration and CO with Air-Fuel Ratio [82]</td>
<td>69</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Comparison of Heat Release Rates for Different Fuels [84]</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Structure of ANN for Dual Fuel (CNG-Diesel) Operated Diesel Engine [93]</td>
<td>79</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Flow chart for the proposed study</td>
<td>83</td>
</tr>
<tr>
<td>Plate 3.1</td>
<td>Experimental Test Rig</td>
<td>87</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Schematic Diagram of Experimental Test Rig</td>
<td>88</td>
</tr>
<tr>
<td>Plate 3.2</td>
<td>Variable Compression Ratio Diesel Engine</td>
<td>91</td>
</tr>
<tr>
<td>Plate 3.3</td>
<td>Rear View of the Engine</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Principle of Tilting Cylinder Block Assembly</td>
<td>93</td>
</tr>
<tr>
<td>Plate 3.4</td>
<td>Tilting Cylinder Block Arrangement</td>
<td>93</td>
</tr>
<tr>
<td>Plate 3.5</td>
<td>Compression Ratio Setting</td>
<td>94</td>
</tr>
<tr>
<td>Plate 3.6</td>
<td>Fuel Injection Pump</td>
<td>95</td>
</tr>
<tr>
<td>Plate 3.7</td>
<td>Eddy Current Dynamometer</td>
<td>96</td>
</tr>
<tr>
<td>Plate 3.8</td>
<td>Assembly of Eddy Current Dynamometer and Engine</td>
<td>97</td>
</tr>
<tr>
<td>Plate 3.9</td>
<td>Components Connected to the Eddy Current Dynamometer</td>
<td>98</td>
</tr>
<tr>
<td>Plate 3.10</td>
<td>Load Cell</td>
<td>99</td>
</tr>
<tr>
<td>Plate 3.11</td>
<td>Dynamometer Loading Unit</td>
<td>100</td>
</tr>
<tr>
<td>Plate 3.12</td>
<td>Engine Panel Box</td>
<td>101</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic Diagram of the Loading Dimmerstat</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Circuit Diagram of the Loading Dimmerstat</td>
<td>102</td>
</tr>
<tr>
<td>Plate 3.13</td>
<td>Piezosensor</td>
<td>103</td>
</tr>
<tr>
<td>Plate 3.14</td>
<td>The Nut Adjustment for Setting Injection Pressure</td>
<td>104</td>
</tr>
</tbody>
</table>
Plate 3.15 Location of Pressure Sensors...105
Plate 3.16 Sensors Interface Circuit..106
Plate 3.17 Assembly of Emission Measurement Systems..109
Plate 3.18 Exhaust Gas Analyzer..110
Figure 3.5 Principle of Non-Dispersive Infra Red Technique..................................110
Plate 3.19 Measurement of Exhaust Gas Constituents..111
Plate 3.20 Smoke Meter ...112
Figure 3.6 Principle of Folded Geometry..113
Plate 3.21 Measurement of Exhaust Smoke...114
Plate 3.22 Interface of EnginesoftLV..115
Figure 4.1 Input and Output Variables of the Engine System....................................122
Figure 4.2 Comparison of Variation of BTHE with Load at CR of 17.5 and IP of 200bar..123
Figure 4.3 Comparison of Variation of BSFC with Load at CR of 17.5 and IP of 200bar .124
Figure 4.4 Comparison of BTHE at Rated Load, CR of 17.5 and IP of 200bar124
Figure 4.5 Comparison of BSFC at Rated Load, CR of 17.5 and IP of 200bar125
Figure 4.6 Variation of HC with Load at CR of 17.5 and IP of 200bar.........................126
Figure 4.7 Variation of O$_2$ with Load at CR of 17.5 and IP of 200bar126
Figure 4.8 Variation of NO$_x$ with Load at CR of 17.5 and IP of 200bar127
Figure 4.9 Variation of HC with CR at Load of 12kg and IP of 200bar....................127
Figure 4.10 Variation of O$_2$ with CR at Load of 12kg and IP of 200bar128
Figure 4.11 Variation of NO$_x$ with CR at Load of 12kg and IP of 200bar128
Figure 4.12 Variation of HC with IP at Load of 12kg and CR of 17.5...............129
Figure 4.13 Variation of O$_2$ with IP at Load of 12kg and CR of 17.5..............129
Figure 4.14 Variation of NO$_x$ with IP at Load of 12kg and CR of 17.5..............130
Figure 4.15 Comparison of Variation of BTHE with CR at a Load of 12kg and IP of 200bar.131
Figure 4.16 Comparison of Variation of BSFC with CR at a Load of 12kg and IP of 200bar.132
Figure 4.17 Comparison of Variation of BTHE and BSFC with CR at a Load of 12kg and IP of 200bar with Earlier Studies ...133
Figure 4.18 Comparison of Variation of BMEP with CR at a Load of 12kg and IP of 200bar.134
Figure 4.69 Comparison of Variation of NO\textsubscript{x} and HSU with IP at a CR of 18 and Load of 12kg with Jindal et al. [66] ...179

Figure 4.70 Variation of CP With CA at CR of 14 for Karanja Biodiesel ...181

Figure 4.71 Variation of CP With CA at CR of 14 for Diesel Oil ...182

Figure 4.72 Variation of CP With CA at CR of 16 for Karanja Biodiesel ...183

Figure 4.73 Variation of CP With CA at CR of 16 For Diesel Oil ...183

Figure 4.74 Variation of CP With CA at CR of 18 for Karanja Biodiesel ...184

Figure 4.75 Variation of CP With CA at CR of 18 for Diesel Oil ...185

Figure 4.76 Comparison of Variation of Peak CP with CR at a Load of 12kg and an IP of 200bar of the Present Study with that of Earlier Investigations ...186

Figure 4.77 Variation of Net Heat Release Rate With CA at CR of 14 for Karanja Biodiesel188

Figure 4.78 Variation of Net Heat Release Rate With CA at CR of 14 for Diesel Oil188

Figure 4.79 Variation of Net Heat Release Rate With CA at CR of 16 for Karanja Biodiesel189

Figure 4.80 Variation of Net Heat Release Rate With CA at CR of 16 for Diesel Oil190

Figure 4.81 Variation of Net Heat Release Rate with CA at CR of 18 for Karanja Biodiesel191

Figure 4.82 Variation of Net Heat Release Rate with CA at CR of 18 for Diesel Oil191

Figure 4.83 Comparison of Variation of Peak Net Heat Release Rate with CR at a Load of 12kg and an IP of 200bar of the Present Study with that of Earlier Investigations ...193

Figure 4.84 Variation of Rate of Pressure Rise with CA at CR of 14 for Karanja Biodiesel195

Figure 4.85 Variation of Rate of Pressure Rise with CA at CR of 14 for Diesel Oil195

Figure 4.86 Variation of Rate of Pressure Rise with CA at CR of 16 for Karanja Biodiesel196

Figure 4.87 Variation of Rate of Pressure Rise with CA at CR of 16 for Diesel Oil197

Figure 4.88 Variation of Rate of Pressure Rise with CA at CR of 18 for Karanja Biodiesel198

Figure 4.89 Variation of Rate of Pressure Rise with CA at CR of 18 for Diesel Oil198

Figure 4.90 Comparison of Variation of Peak Rate of Pressure Rise with CR at a Load of 12kg and an IP of 200bar of the Present Study with that of Earlier Investigations ...200

Figure 4.91 Variation of Mass Fraction Burnt With CA at CR of 14 for Karanja Biodiesel201

Figure 4.92 Variation of Mass Fraction Burnt With CA at CR of 14 for Diesel Oil202

Figure 4.93 Variation of Mass Fraction Burnt With CA at CR of 16 for Karanja Biodiesel203

Figure 4.94 Variation of Mass Fraction burnt with CA at CR of 16 for Diesel Oil204