
Chapter 4 
Peristaltic transport of a conducting 
fluid in a vertical asymmetric channel 

4.1 Introduction 

Most of the contributions in the study of peristaltic transport deal with the 

peristaltic flow in symmetric channels. Although a wide range of understanding 

about peristaltic pumping is possible by considering a channel to be a symmetric 

one, there are some physiological systems such as uterus in which tisymmetry 

plays an important role in transporting thc uterine (f:ytan and Had 1999), 

Mekheimer (2003) studied non-linear peristaltic transport through rr porous 

medium in an inclined channel considering the ef'ect of' gravity, 'l'he first 

experimental work on peristalsis is reported by Lathan1 (1966), I.atcr Wcinberg ct 

al. (1971) confirmed through experiments the usc of Lagrangian approach for 

discussing peristaltic pumping. 

Jaffrin and shaprio (1971) applied wave f r m e  analysis and discussed 

pumping characteristics, trapping and reflux which are important in peristaltic 

transport. A thesis on peristaltic transport in a channel with flexible porous walls 

contained within the channel with fixed walls has been presented by Rces (1988) 

and it contains the review of literature up to 1988. Srivnstava and Srivastava 



(1995) have studied the effects itf Poiseuille flow on peristaltic transport of a 

particulate suspension. 

The importance of yield stress effects on peristaltic pumping is studied by 

vajravelu et a1. (2005a, 2005b). They have considered the bio fluid to be Herschel 

Bulkley fluid and deduced the trapping limits for power law and Bingham fluids. 

In order to have a better understanding the intra-uterine fluid motion in a non- 

pregnant uterus Mishra and Rarnachandra Rao (2003) studied the flow in an 

asymmetric channel generated by peristaltic waves propagating on the walls. The 

inertia and curvature effects on the peristaltic flow of a Newtonian fluid in an 

asymmetric channel are investigated by Mishra (2004) using perturbation 

technique. 

Xiao and Damodaran (2002) have investigated numerically the peristaltic 

pumping in axisymrnetric tubes. Povikidis (1987) has studied the peristaltic flow 

under Stokes approximation by a boundary integral method. Selverov and stone 

(2001) and Yi et al. (2002) have discussed the peristaltic flows in two - 

dimensional channels using perturbation method to model micro electro 

mechanical systems in which fluid motion produces mixing without internal 

movement of the mechanical components. 

In this chapter MHD peristaltic flow of an incompressible viscous fluid in a 

vertical asymmetric channel is investigated under long wavelength and low 

Reynolds number assumptions. The expressions for velocity distribution, the 

stream function, the volume flow rate and the pressure rise are obtained. The 



effects ot phiise slllrr and Hartmann number on the pumping chmcteristics are 

discussed. 

Mathematical formulation and Solution 

We consider the peristaltic transport of a conducting viscous fluid in a 

vertical asymmptric channel with flexible walls with asymmetry being generated 

by the propagation of waves on the channel walls travelling with same speed c but 

with different amplitudes and phases. We assume that a uniform magnetic field 

, strength B, is applied in the transverse direction to the directio~~ of the flow 

(i. e., along the direction of the y-axis) and the induced magnelic licld is assi~mcd 

to be negligible. Fig 4.1. shows the physical model of the asymmetric channel. 
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Fig 4.1. Physical Model 



nhc channel walls are given by 

2~ 
Y = H,(X,t) = u, t b, cos-(X - ct) (upper wall) (4.1 a) 

R 

Y = H,(X,t) = -a, - b2 cos -(X - ct) + 0 (lower wall) (4.1 b) (: 1 
where b ,  , b, are amplitudes of the waves, h is the wavelength, q +a2 is the 

width of the channel, 0 is the phase difference (0501n) and t is the time. 

We introduce a wave fiarne of reference (x, y )  moving with velocity c in 

which the motion becomes independent of-time when the channel length is an 

integral multiple of the wavelength and the pressure difference at the ends of the 

channel is a constant (Shapiro et al. 1969). The transformation from the fixed 

frame of reference (x, Y) to the wave frame of reference (x, y) is given by 

x = X  - c t , y  = Y, u = U -c, v = V and p(x) = P(X,i), 

where (u, v)and (U, V )  are the velocity components, p and P are pressures 

in the wave and fixed frames of reference, respectively. 

The equations governing the flow in wave frame of reference are given by 



where o; is the electrical conductivity ofthe fluid, p is the density, / r  is the 

viscosity of the fluid and g is the acceleratio~l due to gravity. 

Introducing the following non-dimensional variables 

- x -  y -  u -  v a ; ,d a2 X = - , y = - , u = - , y = - , s = -  =- 
1 a,, c cs a1 

in the governing equations (4.1-4.4), and dropping the bars, we get 

[ :) :t62[62$+$). ~ e 6 ~  u-tv- =-- 

Pa c ":g where Re = 1 is the Reynolds number, r ,~ = - is the gravity parameter, 
lr VC 

P 
M = &u,E is the HMmann number and v = - is the kinematic viscosity of 

P 

the fluid. 



Using long wavelength (i.e.,S << 1 ) and negligible inertia (i.e.,Re -+ 0)  

approximations, we have 

dp where P = - - q, 
dx 

The corresponding non-dimensional boundary conditions are given as 

Solving equation (4.9) using the boundary conditions (4.10), we get 

(-1 t PI ~ ' ) [ s i n h ~ h ,  -sinhM$] 
where c, = and 

[cosh ~ h ,  sinhMh, - cosh Mh, sinh MF,] 

(-I + P I M ~ ) [ C O S ~ M ~ ,  -cos~&]  
C2 = 

[cosh MI, sinh y - cosh Mh sinh 4 
The volume flow rate in the wave frame is given as 

= L(s inh  ~ h ,  - sinh MI+) + L(cosh  ~ h ,  - cosh Mh, ) 
M M 

From (4.12), we have 



where 

D, = cosh.Mh, sinh ME, - cosh Mh, sinh Mh, md 

4 = (cosh Mh, - cosh ~ 4 ) '  - (sinh Mh, - sinh M4)' 
I 

The instantaneous flux at any axial station is givcn by 

The average volume flow rate over one wave period (T=L 1 r ) of the 

peristaltic wave is defined as 

The pressure rise over one wave length of thc perisl~ltic wave is given by 

I M3D, I -(I + J),V3D, + u,M' 
where 1, = 1 & a n d ~ = I  

0 ~ 2 - ( 4 - 4 ) ~ ~ 1  0 4 - ( 4 - 4 ) M 4  &' 

The equation (4.16) can be rewritten as 



4.3 Discussion of the Results 

From Equation (4.1 1) we have evaluated the variation of axial velocity u as 

a function of y at x=0.25 for different values of M with 4, =0.7,4 =1.2, d = 2,  

dp_-  dp dp q=0.3 and phase shift 0=0 for (i) -- 0.5 b (ii) -= 0 and (iii) -= 0.5, and 
& dx ak 

is shown in Fig 4.2. As M increases the maximum velocity increases for 

dp dp dp -= -0.5, -= 0 and-= 0.5 . Further for non conducting fluid ( i.e., M = O  ) 
dw ak dw 

the flow reverses. 

The variation of axial velocity u with y for different values of M at x=0.25 

A dp dp dp 
and B= - for (i) -=-0.5, (ii) -=0 (iii) -=0.5 as shown in Fig 4.3. The 

4 dx dx dx 

dp dp dp maximum velocity increases as M increases for -=- 0.5 -= 0 and-= 0.5 . 
dw dw dx 

dp Further, for -=0,5 the flow is reversed in the direction of wave propagation on 
ak 

a 
the channel for M =O as shown in Fig 4.3. The same behavior holds for B=-, as 

2 

shown in Fig 4.4. .Finally we conclude as phase shift increases the maximum 

velocity decrease (Fig 4.2 - 4.4). Further the maximum velocity is more when 

compared with that in the horizontal channel. 



The variation of axial velocity u as a fhnction of y at .t=0.25 for ditTereilt 

IT values of gravity parameter 7 with 4, =0.7, #2 = 1.2, d = 2, 0= - and M = 0.5. 
d 

dp-- df dp for (i) -- 0.5, (ii) -=0 (iii) -=0.5 as shown in Fig 4.5. I t  is observcd 
du du dr 

4) that the maximum velocity increases as 7 increases for all values of - . 
dr 

Using equation (4.16) we have evaluated the variation of time averaged 

flux with 41 fbr different values of phase shill 8 , with 1, =0.7. = 1.2, d = 2 .  

q= 1 for (1) M =0,5 and (ii) M = I  as shown in Fig 4.6. It is deserved that free 

0) and co pumping (Ap< 0) increases as B increases, where as 

pumping (4> 0) increases as 0 increases, for an appropriately chosen41 z 0. 

Further as M increases 3 increases. 

Fig 4.7 shows the variation of time averaged flow ratc 3 with Ap for 

different values of phase shift 8 with 4 =0,7,4* = I  .2,d = 2, M = 0.5 and for 

(i) q = 0,  (ii) p = 1 and (iii) p = 2 .  I t  is observed that Sree pumping (4- 0) 

and co-pumping (Ap<O) increase as 0 increases for the cases tj =I  and 2 and 

pumping decreases as 0 increases. Further as p increases 3 increases. Another 

interesting observation here is that for p = 0  the pumping and frcc pumping 

decrease as phase shift increases. It is clear that from Fig. 4.7 as rl increases the 

point of intersection of pumping curves will move from 4'h quadrant to I* 

quadrant. 
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Fig 4.2(i). The variation of velocity u with y for different values of 
with4 = 0.7,A = 1.2, d = 2 , ~  = 0.3, x = 0.25 and 8 = 0 

d~ for- = -0.5. 
dx 



Fig 4.2(ii). The variation of velocity u with y for different values of M 



4.2(iii). The variation of velocity u with y for different values of N 
with#, =0.7,h=1.2, d=2,q=0.3,  x=0.25andO=O 



Fig 4.3(i). The variation of velocity u with y for different values of M 
withd=0.7,4=,1.2,  d = 2 , ~ = 0 . 3 ,  x=0.25andB=lr/4 

Q- for- - -0.5. 
dx 



Fig 4.3(ii). The variation of velocity u with yfor different values of M 
with#, = 0.7,A = 1.2, d =2,7 =0.3, x =  0.25and8= zI4 



Fig 4.3(iii). The variation of velocity u with y for different values of M 
with4 = 0.7,A = I  .2, d = 2,q = 0.3, x = 0.25 and0 = ~ 1 4  

dp for- = 0.5. 
/ir 



Fig 4.4(i). The variation of velocity u with yfor different values of M 
with4 = 0.7,h = 1.2, d = 2,q = 0.3, x = 0.25 and8 = x / 2  

dp for- = -0.5. 
dr ' 



?ig 4.4(ii). The variation of velocity u with y for different values of h 
with4 =0.7,4 = 1.2, d =2,q=0.3,  x = 0 . 2 5 a n d 0 = ~ / 2  

dp for- = 0 
& 



Fig 4.4(iii). The variation of velocity u with y for different values of M 
with#, = 0.7,A = 1.2, d = 2 , ~  = 0.3, x = 0.25 and0 = a12 

dp for- = 0.5. 
dx 



Fig 4.5(i). The variation of velocity u with yfor different values of q 
with4 =0 .7 ,4  = 1.2, d = 2 ,M =0.5, x =0,25andB= lrI4 

dp for- = -0.5. 
dx 



Fig 4.5(ii). The variation of velocity u with yfor different values of q 

dp for- =0. 
dr 



Fig 4.5(iii). The variation of velocity u with yfor different values of 11 
~ i t h 4 = 0 . 7 , # ~ = 1 . 2 ,  d = 2 , M = 0 . 5 ,  x=0.25andB=x/4  

dp for- = 0.5. 
du 



Fig 4.6(i). The variation of pressure rise &with time-averaged volume flow 
rate 6 for different phase shifts with d = 2,#, = 0.7,#> = 1.2 and 
f]=lfor M = 0 . 5 .  



:ig 4.6(ii). The variation of pressure rise Ap with time-averaged volume 
flow rate for different phase shifts with d = 2,#, = 0.7,#* = 1.2 

and r,~ = 1 for (i) M = 0.5 and ( i i )  M = I .  



Fig 4.7(i). The variation of pressure rise Ap with time-averaged volume 

flow rate for different phase shifts with d = 2 4  = 0.7,@2 = 1.2 
and M = 0.5for r l=0 .  



Fig 4.7(ii). The variation of pressure rise Apwith time-averaged volume 

flow rate 3 for different phase shifts with d = 2 4  = 0.7,g1 = 1.2 
and M = 0.5 for q = I .  



Fig 4.7(iii). The variation of pressure rise Ap with time-averaged volume 

flow rate for different phase shifts with d = 2 4 ,  = 0.7,A = 1.2 
and M=0.5for 7 = 2 .  


