Chapter 4

Peristaltic transport of a conducting
fluid in a vertical asymmetric channel

4.1 Introduction

Most of the‘contributions in the study of peristaltic transport deal with the
peristaltic flow in symmetric channels. Although a wide range of understanding
| about peristaltic pumping is possible by considering a channel to be a symmetric
one, there are some physiological systems such as uterus in which asymmetry
plays an important role in transporting the uterine (Eytan and Elad 1999),
Mekheimer (2003) studied non-lincar peristaltic transport through a porous
medjum in an inclined channel considering the effect of gravity. The first
experimental work on peristalsis is reported by Latham (1966). Later Weinberg et
al. (1971) confirmed tﬁrough experiments the usc of Lagrangian approach for
discussing peristaltic pumping.

Jaffrin and shaprio (1971) applied wave frame analysis and discussed
pumping characteristics, trapping and reflux which are important in peristaltic
transport. A thesis on peristaltic transport in a channel with flexible porous walls
contained within the channel with fixed walls has becﬁ presented by Rees (1988)

and it contains the review of literature up to 1988. Srivastava and Srivastava
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(1995) have studied the effects of Poiseuille flow on peristaltic transport of a
particulate suspension.

The importance of yield stress effects on peristaltic pumping is studied by
vajravelu et al. (2005a, 2005b). They have considered the bio fluid to be Herschel
Bulkley fluid and deduced the trapping limits for power law and Bingham fluids.
In order to have a better understanding the intra-uterine fluid motion in a non-
pregnant uterus Mishral and Ramachandra Rao (2003) studied the flow in an
asymmetric channel generated by peristaltic waves propagating on the walls. The
inertia and curvature effects on the peristaltic flow of a Newtonian fluid in an
asymmetric channel are investigated by Mishra (2004) using perturbation
technique. |

Xiao and Damodaran (2002) have investigated numerically the peristaltic
pumping in axisymmetric tubes. Pozrikidis (1987) has studied the peristaltic flow
under Stokes approximation by a boundary integral method. Selverov and stone
(2001) and Yi et al. (2002) have discussed the peristaltic flows in two -
dimensional channels using perturbation method to model micro electro
mechanical systems in which fluid motion produces mixing without internal
movement of the mechanical components.

In this chapter MHD peristaltic flow of an incompressible viscous fluid ina
vertical asymmetric channel is investigated under long wavelength and low
Reynolds number assumptions. The expressions for velocity distribution, the

stream function, the volume flow rate and the pressure rise are obtained. The
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ettects ol phase s and Hartmann number on the pumping characteristics are

discussed.

Mathematical formulation and Solution

We consider the peristaltic transport of a conducting viscous fluid in a
vertical asymmetric channel with flexible walls with asymmetry being generated
by the propagation of waves on the channel walls travelling with same speed ¢ but
with different amplitudes and phases. We assume that a uniform magnetic field

_strength B, is applied in the transverse direction to the direction of the flow

(i. e., along the direction of the y-axis) and the induced magnetic licld is assumed

to be negligible. Fig 4.1. shows the physical model of the asymmetric channel,
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Fig 4.1. Physical Model
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The channel walls are given by

Y=H(X,)=a,+b, cos%(X -ct) (upper wall)  (4.1a)

Y=H,/(X,t)=-a,~b, cos(%—?(X—ctHﬂ) (lower wall)  (4.1b)
where b, b, are amplitudes of the waves, A is the wavelength, g +a, is the

width of the channel, 8 is the phase difference (0<8<n) and ¢ is the time.

We introduce a wave frame of reference (x, y) moving with velocity ¢ in
which the motion becomes independent of-time when the channel length is an
integral multiple of the wavelength and the pressure difference at the ends of the
channel is a constant (Shapiro et al. 1969). The transformation from the fixed
frame of reference (X, ¥) to the wave frame of reference (x, y) is given by

x=X-ct,y=Y,u=U-c,v=VF and p(x) = P(X, 1),
where (u, v)and (U, V) are the velocity components, p and P are pressures

in the wave and fixed frames of reference, respectively.

The equations governing the flow in wave frame of reference are given by

—t—=0, 4.2
RS (4.2)
2 2 2 :
u-——+v@=—l§£+-‘l—{ -6—1:+6—12‘ —g'ﬁ-wg, 43)
pox p\& &) p
2 2
u?-‘i+v‘-3”-=-la—”+ﬁ(9-§+?—-§], (4.4)
o & pdy pldx O
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where o, is the electrical conductivity of the fluid, p is the density, g is the

viscosity of the fluid and g is the acceleration due to gravity.

Introducing the following non-dimensional variables

- X- Y- u-_v a a
x=—,y=—U=—y=-—49d=1L =22
PP Sl R
— pa’ H b b
P=“‘l‘,h|:“l‘,h2'—"—2‘,ﬂ:—l,¢2=‘l.
pch a, a, a, a,

in the governing equations (4.1-4.4), and dropping the bars, we get
h =1+ ¢ cos2ax, by =-d - @ cos(27x +0)

—+—=0,

& Oy

du o) op (g0 Bu) .
A= e 2 - M,
Reé‘(u +v J . ( R ) u+1)

v v ) v o
RC(SJ[U-G-;+V?3}—)=—5y£+§2[(525x—2‘+@—2'].

(4.5)

(4.6)

4.0

4.8)

where Re=2%C is the Rcynolds number, 7= ,g is the gravity parameter,

U

M=Bga, J» is the Hartmann number and v = £ is the kinematic viscosity of
H Iy

the fluid.
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Using long wavelength (.., <<1) and negligible inertia (i.c.,Re > 0)

approximations, we have

2
%:0, ?_’:—Mzuzpl (49)
where P=Q-n.
dx

The corresponding non-dimensional boundary conditions are given as
u=-l‘ at  y=handy=h (4.10)
Solving equation (4.9) using the boundary conditions (4.10), we get
u =c,cosh My + c, sinh My - P/ M

@.11)

(-1+ P/M’)[sinthl ~sinh Mh | ;
[cosh M, sinh Mh, - cosh M, sinh M#, | an

where ¢, =

_ (=14P/ M )[cosh M, ~ cosh M
6= [cosh Mp sinh M, ~ cosh Mh, sinh Mh |

The volume flow rate in the wave frame is given as

g= j:udy

< %(sinth, —Isinth2) +—;2?(costh, - cosh Mh,) (4.12)
3
"A}"«:(’A ~h).

From (4.12), we have
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dp _ qM’D+ DM’

& D-(n-m)p, " | 4

where

D, = cosh Mh, sinh Mh, - cosh Mh, sinh Mh, and

D, =(cosh Mh, - cosh Mh, )" - (sinh M, - sinh Mh,

The instantaneous flux at any axial station is given by
Q(x,t)=£:(u+l)dy=q+hl-—h2 (4.14)

The average volume flow rate over one wave period (T=4/¢ ) of the

peristaltic wave is defined as

0= [at=2[ (q+h-h=g+1+d @15)
=7 T q q : 4
The pressure rise over one wave length of the peristaltic wave is given by
[ 3 2
ap= Ei}zdx= f gD +DM’ }
dx o_Dz_(hl‘hz)MDl
(4.16)
[(0-1-d)M°D,+ DM’

PETEAT

+

i
DO Gy =

‘ M°D ‘(1 +d)M*D, + DM’
where1=—--————-—l————-dxand1=f Loy,
: (]J'Dz-(h,—hz)MD, : 6’ D, ~(h = by ) MD,

The equation (4.16) can be rewritten as

bp-L-n (417
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4.3 Discussion of the Results

From Equation (4.11) we have evaluated the variation of axial velocity u as

a function of y at x=0.25 for different values of M with ¢=0.7, ¢,=12,d=2,
. . dp .\ dp .on AP

=(.3 and phase shift =0 for (i) —=-0.5b (ii) —=0 and (iii) —=0.5, and
n p (i) " (ii) " (iii) "

is shown in Fig 4.2. As M increases the maximum velocity increases for

@= -0.5, —43: 0 and@= 0.5. Further for non conducting fluid ( i.e, M=0)
dx dx dr

the flow reverses.

The variation of axial velocity u with y for different values of M at x=0.25

with ¢=0.7,4,=1.2, d =2,7=03andx = 025 with¢,=0.7,4,=1.2,d = 2, =03

and =2 for () -—-=—0.5, (ii) d_p=0 (iii) ip_=0_5 as shown in Fig 4.3. The
4 dx dx
maximum velocity increases as M increases for — % =-0.5 EE 0 dZ:

Further, for ij"‘éc‘LO.S the flow is reversed in the direction of wave propagation on

the channel for M =0 as shown in Fig 4.3. The same behavior holds for 0=§, as

shown in Fig 4.4. Finally we conclude as phase shift increases the maximum
velocity decrease (Fig 4.2 - 4.4). Further the maximum velocity is more when

compared with that in the horizontal channel.
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The variation of axial velocity u as a function of y at x=0.25for dif¥erent

values of gravity parameter 7 with $=0.7, =12, d=2, 0=£andM:0.S.
4
. dp odp )
for () =£=-05, (i) <=0 (i Eé:o.s as shown in Fig 4.5. It is observed

that the maximum velocity increases as 7 increases for all values of @ .
dx

Using equation (4.16) we have evaluated the variation of time averaged

flux with Ap for ifferent valus of phase shift 8, with ¢=0.7, ¢, =12, d =2,
n=1for (1) M=0.5 and (i) M=I as shown in Fig 4.6. It is deserved that free
pumping(Ap=0) and co pumping (Ap<0) increases as 8 increases, where as
pumping (Ap> 0) increéses as @ increases, for an appropriately chosendp > 0.

Further as M increases Z) increases.

Fig 4.7 shows the variation of time averaged flow rate Q with Ap for
different values of phase shift @ with ¢=0.7,4,=1.2,d=2,M =05 and for
() 7=0, (i) n=1 and (i) n=2. It is observed that frec pumping (Ap= 0)
and co-pumping (Ap<0) increase as @ increases for the cases #7=1and 2and
pumping decreases as 0 iqcreases. Further as 7 increases @ increases. Another
interesting observation here is that for 7=0 the pumping and frec pumping
decrease as phase shift increases. It is clear that from _Fig. 4.7 as pincreases the
point of intersec;ion of pumping curves will move from 4% quadrant to 1"

quadrant.
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Fig 4.2(i). The variation of velocity u with y for different values of M

withg =0.7,¢,=1.2, d=2,7=0.3, x=0.25and =0
forégz-O.S.
dx
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Fig 4.2(ii). The variation of velocity u with yfor different values of M

withg, =0.7,4,=1.2, d=2,7=03, x=0.25and#=0 for%zo.
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Fig 4.2(iii). The variation of velocity » with yfor different values of M

with¢,=0.7,¢2=1.2, d=2,n=03, x=025andd=0
forfi-p—=0.5.
dx
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Fig 4.3(i). The variation of velocity u with yfor different values of M
withg =0.7,4,=12, d=2,7=03, x=025andf=r/4

forin— =-0.5.
dx
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Fig 4.3(ii). The variation of velocity u with yfor different values of M
withg =0.7,4,=1.2, d=2,7=03, x=025and@=x/4

for@- =
dx
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Fig 4.3(iii). The variation of velocity u with y for different values of M
withg =0.7,4,=12, d=27=03, x=025andf=7x/4

forg'z =0.5.
dx
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Fig 4.4(i). The variation of velocity u with yfor different values of M
withg =0.7,4,=1.2, d=27=03, x=025andf=z/2

for—@_z -05.
dx
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3ig 4.4(ii). The variation of velocity u with y for different values of M
withd =0.7,4, =1.2, d=2,7=0.3, x=0.25andf=17/2

forfi£=0.
dx

79



"
-

-0.4 o = >M=2 1
o .\‘
g ",
-0.5¢ ’ N,
Q,. \-‘
/l \

-0.61 / '

g ‘.\

7 3

u / M=1 K

'115.8 04 0 04 08 1
y

Fig 4.4(iii). The variation of velocity 4 with yfor different values of M
withg =0.7,4,=12, d=27=03, x=025andf=7/2

for—‘-ig =0.5.
dx
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Fig 4.5(i). The variation of velocity u with yfor different values of »
withg, =0.7,4,=12, d=2,M=05, x=025andf=n/4

for‘—if—7 =-0.5.
dx
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Fig 4.5(ii). The variation of velocity u with yfor different values of n
withg =0.7,4,=12, d=2,M=05, x=025andf=x/4

ford—p =0.
dx
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Fig 4.5(iii). The variation of velocity » with yfor different values of 7
withg =0.7,4,=12, d=2,M=05, x=025andf=r/4

for@-=0.5.
dx
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Fig 4.6(i). The variation of pressure rise Ap with time-averaged volume flow
rate O for different phase shifts with d=2,4,=0.7,4,=12 and
n=1for M =05.
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%ig 4.6(ii). The variation of pressure rise Apwith time-averaged volume

flow rate O for different phase shifts with d =2,4 =07, =1.2
and 5 =1for (i) M =0.5 and (i) M =1.
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Fig 4.7(i). The variation of pressure rise Ap with time-averaged volume

flow rate Q for different phase shifts with d =2,¢, =0.7,4, =1.2
and M =0.5for 7=0.
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Fig 4.7(ii). The variation of pressure rise Ap with time-averaged volume
flow rate O for different phase shifts with d = 2,4 =0.7,¢,=1.2
and M =05for =1
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Fig 4.7(iii). The variation of pressure rise Ap with time-averaged volume

flow rate é for different phase shifts with d =2,4,=0.7,4, =12
and M =0.5for p=2.
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