TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>01</td>
</tr>
<tr>
<td>1.1</td>
<td>GENERAL</td>
<td>01</td>
</tr>
<tr>
<td>1.2</td>
<td>ORGANISATION OF THE THESIS</td>
<td>04</td>
</tr>
<tr>
<td>2</td>
<td>HISTORICAL BACKGROUND FOR THE PRESENT WORK</td>
<td>06</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>06</td>
</tr>
<tr>
<td>2.2</td>
<td>IDENTIFICATION OF CRACK</td>
<td>06</td>
</tr>
<tr>
<td>2.3</td>
<td>LITERATURE REVIEW - IDENTIFICATION OF CRACK</td>
<td>07</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Analysis of Crack</td>
<td>07</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Crack Identification</td>
<td>11</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Crack (Tip) Finite Element Formulation and Modelling</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>UPDATION OF FINITE ELEMENT MODEL</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>LITERATURE REVIEW - MODEL UPDATION</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Experimental Modal Analysis</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Finite Element Model Updation</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>AIM, SCOPE AND OBJECTIVE OF THE PRESENT WORK</td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>CRACK IDENTIFICATION ALGORITHM - AN INTEGRITY CHECK</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>THEORETICAL BACKGROUND</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Flexural Vibration of a Beam</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Torsional Vibration of a Beam</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>EFFECTS ON LOCAL MODAL PARAMETERS DUE TO CRACK</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Bending Mode Shape</td>
<td>32</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Torsion Mode Shape</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Strain Mode Shape</td>
<td>34</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Effect of Using Local/Global Modal Parameters to Locate the Crack</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>EVALUATION OF FREQUENCY CHANGES</td>
<td>38</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Theoretical Procedure</td>
<td>38</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Experimental Procedure</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Numerical Procedure</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>DISCUSSIONS</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>CRACK IDENTIFICATION - A CASE STUDY</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>CONCLUSIONS</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>LIMITATIONS OBSERVED AND SUGGESTIONS PROPOSED</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>MODAL ANALYSIS BY UPDATING THE FINITE ELEMENT MODEL</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>GENERAL PROCEDURE</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>METHODOLOGY OF MODEL UPDATE</td>
<td>62</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Finite Element Model</td>
<td>62</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Experimental modal Analysis</td>
<td>65</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Model Matching</td>
<td>67</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Correlation Techniques</td>
<td>69</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Selection of Updating Parameters</td>
<td>70</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Correction of Finite Element Model</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>VALIDATION WITH CASE STUDIES</td>
<td>75</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Model Updation to Identify the Crack</td>
<td>75</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Model Updation of a Cantilever Plate</td>
<td>79</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Model Updation of Cantilever Plate With an Unknown Mass</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>CONCLUSIONS</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>TROUBLESHOOTING USING MODAL ANALYSIS - ON A SUB ASSEMBLY</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>PROBLEM DEFINED AND METHODOLOGY USED</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>MODAL ANALYSIS OF REGULATOR ASSEMBLY</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>CONCLUSIONS</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>APPLICATION OF MODAL ANALYSIS AND MODEL UPDATING - A CASE STUDY ON AN ASSEMBLY</td>
<td>116</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>116</td>
</tr>
<tr>
<td>6.2</td>
<td>DESCRIPTION OF AN ALTERNATOR</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>FINITE ELEMENT ANALYSIS</td>
<td>117</td>
</tr>
<tr>
<td>6.4</td>
<td>EXPERIMENTAL MODAL ANALYSIS</td>
<td>123</td>
</tr>
<tr>
<td>6.5</td>
<td>MODEL UPDATION</td>
<td>132</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Selection of Updating Parameters</td>
<td>132</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Correction of Analytical Model</td>
<td>132</td>
</tr>
<tr>
<td>6.6</td>
<td>CONCLUSIONS</td>
<td>134</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions, Recommendations and research output</td>
<td>135</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSIONS</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>SUGGESTED FOR FURTHER WORK</td>
<td>138</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>PUBLICATIONS OUT OF THIS THESIS WORK</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>VITAE</td>
<td></td>
<td>153</td>
</tr>
</tbody>
</table>