LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Influence of process input on grinding process and work quality</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Plunge grinding</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Basic process data for cylindrical grinding</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Recommended bonds and wheel speeds for different grinding operations</td>
<td>28</td>
</tr>
<tr>
<td>6.1</td>
<td>Partition ratio ((R))</td>
<td>99</td>
</tr>
<tr>
<td>7.1</td>
<td>Grinding conditions</td>
<td>107</td>
</tr>
<tr>
<td>7.2</td>
<td>Specifications of cylindrical grinding machine</td>
<td>108</td>
</tr>
<tr>
<td>7.3</td>
<td>Specifications of grinding wheel</td>
<td>108</td>
</tr>
<tr>
<td>7.4</td>
<td>Specifications of electromagnetic crack detector</td>
<td>108</td>
</tr>
<tr>
<td>7.5</td>
<td>Specifications of Surtronic 3+</td>
<td>109</td>
</tr>
<tr>
<td>7.6</td>
<td>Specifications of Vicker's microhardness testing apparatus</td>
<td>109</td>
</tr>
<tr>
<td>7.7</td>
<td>Specifications of metallurgical microscope</td>
<td>110</td>
</tr>
<tr>
<td>7.8</td>
<td>Specifications of X-ray analyzer</td>
<td>110</td>
</tr>
<tr>
<td>8.1</td>
<td>Hardness at various depths for different number of passes (AISI 3310)</td>
<td>121</td>
</tr>
<tr>
<td>8.2</td>
<td>Influence of number of passes (AISI 3310)</td>
<td>121</td>
</tr>
<tr>
<td>8.3</td>
<td>Comparison of hardness of turned and ground specimen (AISI 3310)</td>
<td>122</td>
</tr>
<tr>
<td>8.4</td>
<td>Surface roughness values ((R_a, R_t, R_z)) for different depth ground (AISI 3310)</td>
<td>122</td>
</tr>
<tr>
<td>8.5</td>
<td>Hardness at various depths for different number of passes (AISI 4140)</td>
<td>123</td>
</tr>
<tr>
<td>8.6</td>
<td>Influence of number of passes (AISI 4140)</td>
<td>123</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>8.7</td>
<td>Comparison of hardness of turned and ground specimen (AISI 4140)</td>
<td>124</td>
</tr>
<tr>
<td>8.8</td>
<td>Surface roughness values (R_a, R_t and R_z) for different depth ground (AISI 4140)</td>
<td>124</td>
</tr>
<tr>
<td>8.9</td>
<td>Hardness at various depths for different number of passes (AISI 1040)</td>
<td>125</td>
</tr>
<tr>
<td>8.10</td>
<td>Influence of number of passes (AISI 1040)</td>
<td>125</td>
</tr>
<tr>
<td>8.11</td>
<td>Comparison of hardness of turned and ground specimen (AISI 1040)</td>
<td>126</td>
</tr>
<tr>
<td>8.12</td>
<td>Surface roughness values (R_a, R_t and R_z) for different depth ground (AISI 1040)</td>
<td>126</td>
</tr>
<tr>
<td>8.13</td>
<td>Hardness at various depths for different number of passes (AISI 6150)</td>
<td>127</td>
</tr>
<tr>
<td>8.14</td>
<td>Influence of number of passes (AISI 6150)</td>
<td>127</td>
</tr>
<tr>
<td>8.15</td>
<td>Comparison of hardness of turned and ground specimen (AISI 6150)</td>
<td>128</td>
</tr>
<tr>
<td>8.16</td>
<td>Surface roughness values (R_a, R_t and R_z) for different depth ground (AISI 6150)</td>
<td>128</td>
</tr>
<tr>
<td>8.17</td>
<td>Hardness at various depths for different number of passes (AISI 9255)</td>
<td>129</td>
</tr>
<tr>
<td>8.18</td>
<td>Influence of number of passes (AISI 9255)</td>
<td>129</td>
</tr>
<tr>
<td>8.19</td>
<td>Comparison of hardness of turned and ground specimen (AISI 9255)</td>
<td>130</td>
</tr>
<tr>
<td>8.20</td>
<td>Surface roughness values (R_a, R_t and R_z) for different depth ground (AISI 9255)</td>
<td>130</td>
</tr>
<tr>
<td>8.21</td>
<td>Hardness at various depths for different number of passes (AISI T1)</td>
<td>131</td>
</tr>
<tr>
<td>8.22</td>
<td>Influence of number of passes (AISI T1)</td>
<td>131</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>8.23</td>
<td>Comparison of hardness of turned and ground specimen (AISI T1)</td>
<td>132</td>
</tr>
<tr>
<td>8.24</td>
<td>Surface roughness values (R_a, R_t, R_z) for different depth ground (AISI T1)</td>
<td>132</td>
</tr>
<tr>
<td>8.25</td>
<td>Hardness at various depths for different number of passes (AISI O1)</td>
<td>133</td>
</tr>
<tr>
<td>8.26</td>
<td>Influence of number of passes (AISI O1)</td>
<td>133</td>
</tr>
<tr>
<td>8.27</td>
<td>Comparison of hardness of turned and ground specimen (AISI O1)</td>
<td>134</td>
</tr>
<tr>
<td>8.28</td>
<td>Surface roughness values (R_a, R_t, R_z) for different depth ground (AISI O1)</td>
<td>134</td>
</tr>
<tr>
<td>8.29</td>
<td>Hardness at various depths for different number of passes (AISI 52100)</td>
<td>135</td>
</tr>
<tr>
<td>8.30</td>
<td>Influence of number of passes (AISI 52100)</td>
<td>135</td>
</tr>
<tr>
<td>8.31</td>
<td>Comparison of hardness of turned and ground specimen (AISI 52100)</td>
<td>136</td>
</tr>
<tr>
<td>8.32</td>
<td>Surface roughness values (R_a, R_t, R_z) for different depth ground (AISI 52100)</td>
<td>136</td>
</tr>
<tr>
<td>8.33</td>
<td>Hardness at various depths for different number of passes (AISI D2)</td>
<td>137</td>
</tr>
<tr>
<td>8.34</td>
<td>Influence of number of passes (AISI D2)</td>
<td>137</td>
</tr>
<tr>
<td>8.35</td>
<td>Comparison of hardness of turned and ground specimen (AISI D2)</td>
<td>138</td>
</tr>
<tr>
<td>8.36</td>
<td>Surface roughness values (R_a, R_t, R_z) for different depth ground (AISI D2)</td>
<td>138</td>
</tr>
<tr>
<td>8.37</td>
<td>Hardness at various depths for different number of passes (AISI M2) for an infeed of 0.6 mm/min</td>
<td>139</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>8.38</td>
<td>Hardness at various depths for different number of passes (AISI M2) for an infeed of 1.25 mm/min</td>
<td>140</td>
</tr>
<tr>
<td>8.39</td>
<td>Hardness at various depths for different number of passes (AISI M2) for an infeed of 2.3 mm/min</td>
<td>141</td>
</tr>
<tr>
<td>8.40</td>
<td>Hardness at various depths for different number of passes (AISI 1040) for an infeed of 0.6 mm/min</td>
<td>142</td>
</tr>
<tr>
<td>8.41</td>
<td>Hardness at various depths for different number of passes (AISI 1040) for an infeed of 1.25 mm/min</td>
<td>143</td>
</tr>
<tr>
<td>8.42</td>
<td>Hardness at various depths for different number of passes (AISI 1040) for an infeed of 2.3 mm/min</td>
<td>144</td>
</tr>
<tr>
<td>8.43</td>
<td>Influence of feed rate on hardness penetration depth for the materials AISI M2 and AISI 1040</td>
<td>144</td>
</tr>
<tr>
<td>8.44</td>
<td>Influence of percentage of carbon on hardness for the materials AISI 3310, AISI 1040, AISI 9255 and AISI O1</td>
<td>145</td>
</tr>
<tr>
<td>8.45</td>
<td>Influence of percentage of carbon on hardness for the materials AISI 4140, AISI 6150, AISI T1, AISI 52100 and AISI D2</td>
<td>145</td>
</tr>
<tr>
<td>8.46</td>
<td>The residual stress on the surface of the grind hardened specimens (AISI T1, AISI O1, AISI M2 and AISI 52100)</td>
<td>199</td>
</tr>
<tr>
<td>8.47</td>
<td>Residual stress after grind hardening (AISI T1)</td>
<td>199</td>
</tr>
</tbody>
</table>