<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Production of 2,4 and 2,6-TDA and TDI in few countries</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Some of the many uses of Urethanes</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Carcinogenicity of 2,4-Toluene diamine compared to other isomers</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Various analytical methods for determination of 2,4-Toluene diamine</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Membranes used for biochemical characterisation</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Substrates employed for assimilation studies</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Metallic salts used in biochemical characterization</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Biodegradation of 2,4-Toluene diamine using microorganisms isolated from polyurethane foams dumped soil</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Results of assimilation of substrates by organisms</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Resistance of Aspergillus nidulans to heavy metals and antibiotics</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison between the data by conventional technique obtained by studying the zone of inhibition and the data obtained by biosensor technique</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>Analysis of variance (sample table)</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Coded levels of independent variables and their corresponding uncoded levels for biodegradation and biosorption of 2,4-TDA using Aspergillus nidulans</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>Detailed experimental plan for biodegradation and biosorption of 2,4-TDA</td>
<td>96</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental plans as required by central composite design along with observed and predicted from model value of response for each combination – biotransformed product</td>
<td>98</td>
</tr>
<tr>
<td>5.5</td>
<td>Experimental plans as required by central composite design along with observed and predicted from model value of response for each combination – biosorbed 2,4-TDA</td>
<td>100</td>
</tr>
<tr>
<td>5.6</td>
<td>Parameter variable for biotransformed product</td>
<td>104</td>
</tr>
<tr>
<td>5.7</td>
<td>Parameter for biosorbed 2,4-TDA</td>
<td>105</td>
</tr>
<tr>
<td>5.8</td>
<td>ANOVA for selected model biotransformed product</td>
<td>106</td>
</tr>
<tr>
<td>5.9</td>
<td>ANOVA for selected model of biosorbed 2,4-TDA</td>
<td>106</td>
</tr>
</tbody>
</table>