Contents

1. **Concept of fractal**
 - 1.1 Introduction
 - 1.2 Mathematical fractals
 - 1.3 Natural fractals
 - 1.4 Concept of fractal dimension
 - 1.5 Applications of fractals
 - 1.6 Applications of fractals in image processing tasks
 - 1.6.1 Fractal Compression
 - 1.6.2 Fractal techniques in 1D and 2D analysis
 - 1.6.3 Fractal techniques in classification
 - 1.7 Conclusion

2. **Fractal dimension**
 - 2.1 Introduction
 - 2.2 Computation of fractal dimension
 - 2.3 Methods of fractal dimension
 - 2.3.1 Walking divider method
 - 2.3.2 Box counting
 - 2.3.3 Prism counting
 - 2.3.4 Epsilon-Blanket
 - 2.3.5 Perimeter-area relationship
 - 2.3.6 Fractional Brownian motion
 - 2.3.7 Power spectrum
 - 2.3.8 Hybrid method
 - 2.4 Merits of fractal dimension
 - 2.5 Concept of multifractals
 - 2.6 Fractal properties
 - 2.6.1 Fractal signature
2.6.2 The Correlation dimension and signature 21
2.6.3 Information dimension 22
2.6.4 Lyapunov dimension 22
2.6.5 Lacunarity 22

2.7 Fractal Analysis of 1D data and Images
2.7.1 Application to 1D data 23
2.7.2 Application to 2D data 27

2.8 Variation of fractal dimension with modified images 29
2.8.1 Variation of fractal dimension with change in resolution 30
2.8.2 Variation of fractal dimension with brightness 31
2.8.3 Variation of fractal dimension with contrast 32
2.8.4 Variation of fractal dimension with edge detection 33
2.8.5 Variation of fractal dimension with high and low grey valued images 34
2.8.6 Variation of fractal dimension with median filtering 36

2.9 Conclusion 37

3. Fractal techniques in Image Compression
3.1 Introduction 38
3.2 Basic concepts and theory on fractal compression 39
3.3 Methodology 40
 3.3.1 Encoding 40
 3.3.2 Decoding 41
 3.3.3 Computational complexity 42
 3.3.4 Comparison with DCT 42
3.4 Applications of fractal compression 43
3.5 Variation of compression with image characteristics 44
3.6 Image Catalogue 47
3.7 Algorithms used 48
 3.7.1 Algorithm for compression module 48
 3.7.2 Algorithm for decompression module 51
3.8 Performance Measures 53
3.9 Results

3.9.1 Variation of fractal dimension with compression
3.9.2 Variation of spectral flatness measure with compression
3.9.3 Variation of fractal dimension with compression ratio
3.9.4 Variation of spectral flatness measure with compression ratio
3.9.5 Relationship of sfm with psnr
3.9.6 Relationship of fractal dimension with psnr

3.10 Conclusion

4. Fractal techniques in image analysis

4.1 Introduction
4.2 Applications of image analysis
4.3 Segmentation techniques
 4.3.1 Histogram thresholding
 4.3.2 Edge detection
 4.3.3 Tree/Graph based approach
 4.3.4 Region growing
 4.3.5 Clustering
 4.3.6 Neural Networks Segmentation

4.4 Fractal Methods
 4.4.1 Computation of pixelwise fractal dimension
 4.4.1.1 Simple thresholding
 4.4.1.2 Sarkar’s method
 4.4.1.3 Beavor’s method
 4.4.1.4 Variation method
 4.4.1.5 New algorithm proposed

4.5 Algorithms
 4.5.1 Algorithms used for computation of pixelwise fractal dimension
 4.5.1.1 Sarkar’s method
 4.5.1.2 Variation method
5.1 Introduction
5.2 Classification methods
5.3 Classification of galaxy images
5.4 Image Catalogue
5.5 Preliminary investigation
5.6 Design of classifiers
 5.6.1 Galaxy classification using fractal dimension and spectral flatness measure
 5.6.2 Galaxy classification using fractal signature
 5.6.2.1 Classification methods
5.7 Conclusion

References