LIST OF SYMBOLS, NOTATIONS AND ABBREVIATIONS

SYMBOLS AND NOTATIONS

CHAPTER 1

ϵ' - permittivity
N - average (total) electron density
P - average (total) hole density
E_g - band gap energy
E_v - valence band energy level (active layer)
E_c - conduction band energy level (active layer)
F_c - electron Fermi level
F_v - hole Fermi level
q - electronic charge
V_j - diode junction voltage
K - boltzmann's constant
T - absolute temperature
N_c - conduction band effective density of states
N_v - valence band effective density of states
N_A - acceptor impurity concentration
N_{A}^\prime - concentration of ionised acceptors
γ - constant
P_o - equilibrium hole density
N_o - equilibrium electron density
n - excess electron density
P - excess photon density
r_n - non radiative recombination life time
r_s - low-level injection spontaneous recombination life time
A - area of diode contact stripe
d - thickness of diode active layer
I_{01}, I_{02} - diode leakage current

R_e - equivalent resistance due to carrier degeneracy
C_s - diode space charge capacitance
R_d - diode small signal resistance
C_d - total diode capacitance
CHAPTER 2

\(\epsilon \) - gain compression factor
\(V_g \) - group velocity
\(a_0 \) - active layer gain coefficient
\(\phi \) - optical phase within the laser cavity
\(\alpha \) - line width enhancement factor
\(q \) - electron charge

CHAPTER 3 & 4

\(n \) - charge density in the quantum well
\(p \) - photon density
\(J \) - injected current density
\(B \) - conventional band-to-band recombination coefficient
\(\Gamma \) - optical confinement factor
\(g_m \) - optical gain
\(V_g \) - speed of light in the lasing medium
\(q \) - charge of an electron
\(N_w \) - number of quantum wells
\(L_z \) - thickness of a single quantum well
\(\beta \) - spontaneous emission coupling coefficient
\(r_p \) - photon life time
\(h \) - planck's constant, \((h^* = h/2\pi) \)
\(E_{fc} \) - quasi-Fermi level in the conduction band
\(E_{fv} \) - quasi-Fermi level in the valence band
\(E_q \) - energy gap between two subbands
\(E_g \) - energy band gap of the laser material
\(E_{ph} \) - photon energy
\(\varepsilon_0 \) - permittivity of free space
\(C \) - speed of light in vacuum
\(\mu \) - refractive index
\(m^*_c \) - effective mass in the conduction band
\(m^*_v \) - effective mass in the valence band
\(m_e \) - mass of an electron
\(\omega \) - radial frequency
\(L \) - length of the laser
\(\alpha_1 \) - intrinsic loss
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{nl}</td>
<td>intrinsic loss for non-lasing mode</td>
</tr>
<tr>
<td>B_{avg}</td>
<td>effective spontaneous emission coupling coefficient for non-lasing mode</td>
</tr>
<tr>
<td>α_{sp}</td>
<td>spontaneous emission coupling coefficient</td>
</tr>
<tr>
<td>α_{st}</td>
<td>stimulated emission coupling coefficient</td>
</tr>
<tr>
<td>W</td>
<td>width of the metal contact on the laser</td>
</tr>
<tr>
<td>R</td>
<td>reflectivity</td>
</tr>
<tr>
<td>E_{c1}</td>
<td>energy level of the first conduction band</td>
</tr>
<tr>
<td>E_{v1}</td>
<td>energy level of the first valence band</td>
</tr>
<tr>
<td>E_{c2}</td>
<td>energy level of the second conduction band</td>
</tr>
<tr>
<td>E_{v2}</td>
<td>energy level of the second valence band</td>
</tr>
<tr>
<td>N_b</td>
<td>barrier/confineent region carrier number</td>
</tr>
<tr>
<td>N_w</td>
<td>well carrier number</td>
</tr>
<tr>
<td>τ_{sw}</td>
<td>carrier life time in the wells</td>
</tr>
<tr>
<td>τ_{ab}</td>
<td>effective life time in the barriers</td>
</tr>
<tr>
<td>τ_c</td>
<td>quantum capture time</td>
</tr>
<tr>
<td>J/e</td>
<td>pumping rate of the constant current source</td>
</tr>
<tr>
<td>η</td>
<td>ratio of capture to release time</td>
</tr>
<tr>
<td>L_G</td>
<td>length of the SCH</td>
</tr>
</tbody>
</table>