LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE No.</th>
<th>Description</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Decrease in threshold current densities for various laser diode structures with year</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Graphical representation of the laser model showing properties and coupling taken into account</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>The diode equivalent circuit</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Energy band diagram of N-P heterojunction (not to scale)</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Large-signal circuit model of the DH laser diode</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Small-signal circuit model of the DH laser diode</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Small-signal model of a semiconductor laser diode</td>
<td>17</td>
</tr>
<tr>
<td>2.1(a)</td>
<td>Schematic diagram for electron-photon interactions in a closed system</td>
<td>24</td>
</tr>
<tr>
<td>2.1(b)</td>
<td>A schematic diagram for photon electron interactions in a semiconductor device</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Circuit model of single mode semiconductor laser</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Sub network for evaluating active-layer charge-storage current</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Simulated response to a dc sweep</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Simulated laser response for a pulse drive current ($\beta = 1 \times 10^{-3}$)</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Simulated laser response for a pulse drive current ($\beta = 5 \times 10^{-2}$)</td>
<td>36</td>
</tr>
<tr>
<td>FIGURE No.</td>
<td>Description</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>2.7</td>
<td>Two-port model of semiconductor laser</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Drive circuit including package parasitics</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Simulated laser response for two unipolar input pulses (without parasitics)</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Simulated laser response for two unipolar input pulses (with parasitics)</td>
<td>41</td>
</tr>
<tr>
<td>2.11</td>
<td>Simulated laser response to a step input</td>
<td>43</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic illustration of the longitudinal mode spectrum for a parabolic gain profile</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>Circuit model of multimode laser based on multimode rate equations</td>
<td>46</td>
</tr>
<tr>
<td>2.14</td>
<td>Simulated response for step function drive current using multimode laser model</td>
<td>48</td>
</tr>
<tr>
<td>2.15</td>
<td>Broadening and attenuation of two adjacent pulses as they travel along a fiber</td>
<td>50</td>
</tr>
<tr>
<td>2.16</td>
<td>Simulated results for a modulation rate of 2 Gbit/s using the digital optical link</td>
<td>51</td>
</tr>
<tr>
<td>2.17</td>
<td>Equivalent circuit of a photodetector</td>
<td>55</td>
</tr>
<tr>
<td>2.18</td>
<td>Sub-circuit for simulation of I_s</td>
<td>57</td>
</tr>
<tr>
<td>2.19</td>
<td>Schematic of generalized feedback circuit</td>
<td>58</td>
</tr>
<tr>
<td>2.20</td>
<td>Eye pattern for modulation rate of 1 Gbit/s and dispersion of 0.1 ns/nm</td>
<td>60</td>
</tr>
<tr>
<td>2.21</td>
<td>Eye pattern for modulation rate of 1 Gbit/s and different amounts of dispersion</td>
<td>62</td>
</tr>
<tr>
<td>FIGURE No.</td>
<td>PAGE No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.22</td>
<td>64</td>
<td>Sub-circuit for laser frequency chirp</td>
</tr>
<tr>
<td>2.23</td>
<td>65</td>
<td>Solution to the rate equations</td>
</tr>
<tr>
<td>3.1</td>
<td>69</td>
<td>Well potential of a QW heterostructure</td>
</tr>
<tr>
<td>3.2</td>
<td>70</td>
<td>Density of states for a QW heterostructure</td>
</tr>
<tr>
<td>3.3</td>
<td>76</td>
<td>Circuit model for QW laser</td>
</tr>
<tr>
<td>3.4</td>
<td>77</td>
<td>The dc L-I characteristics of a QW laser</td>
</tr>
<tr>
<td>3.5</td>
<td>78</td>
<td>Simulated response for step function drive current</td>
</tr>
<tr>
<td>3.6</td>
<td>79</td>
<td>Simulated response for step function drive current (multimode laser)</td>
</tr>
<tr>
<td>3.7</td>
<td>80</td>
<td>Simulated optical equivalent output pulse from a multimode laser</td>
</tr>
<tr>
<td>3.8</td>
<td>82</td>
<td>Waveforms at the output of an optical link</td>
</tr>
<tr>
<td>3.9</td>
<td>83</td>
<td>Eye diagrams observed at 1 Gb/s for various values of C_i</td>
</tr>
<tr>
<td>3.10</td>
<td>84</td>
<td>Eye-diagrams for different pulse formats</td>
</tr>
<tr>
<td>3.11</td>
<td>87</td>
<td>The small-signal model of a QW laser</td>
</tr>
<tr>
<td>3.12</td>
<td>88</td>
<td>Frequency response of a QW laser</td>
</tr>
<tr>
<td>4.1</td>
<td>92</td>
<td>Gain-switched output pulse obtained from a QW laser model with linear gain coefficient</td>
</tr>
<tr>
<td>4.2</td>
<td>95</td>
<td>Optical gain as a function of injected carrier density</td>
</tr>
<tr>
<td>4.3</td>
<td>97</td>
<td>Circuit model representing the multiple quantised levels in a QW laser diode</td>
</tr>
<tr>
<td>FIGURE No.</td>
<td>Description</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4.4</td>
<td>Gain-switched output pulse obtained from a QW laser with $N_y = 1$, $L = 160 \mu m$</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Optical output obtained from a QW laser diode with $N_w = 1$, $L = 160 \mu m$</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Optical output obtained from a QW laser diode with $N_w = 1$, $L = 140 \mu m$</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Gain-switched output pulse obtained from a QW laser with $N_w = 1$, $L = 140 \mu m$</td>
<td>102</td>
</tr>
<tr>
<td>4.8</td>
<td>Simulated pulse waveform from a gain-switched QW laser with $N_w = 1$, $L = 130 \mu m$</td>
<td>103</td>
</tr>
<tr>
<td>4.9(a)</td>
<td>Gain-switched output pulse obtained from a multiple QW laser with $N_w = 2$, $L = 80 \mu m$, $I = 1 \text{ Amp}$</td>
<td>105</td>
</tr>
<tr>
<td>4.9(b)</td>
<td>Simulated pulse waveform from a multiple QW laser with $N_w = 2$, $L = 80 \mu m$, $I = 0.5 \text{ Amp}$</td>
<td>106</td>
</tr>
<tr>
<td>4.10(a)</td>
<td>Gain-switched output pulse obtained from a multiple QW laser with $N_w = 2$, $L = 70 \mu m$, $I = 0.5 \text{ Amp}$</td>
<td>107</td>
</tr>
<tr>
<td>4.10(b)</td>
<td>Optical output obtained from a multiple QW laser with $N_w = 2$, $L = 70 \mu m$, $I = 0.25 \text{ Amp}$</td>
<td>108</td>
</tr>
<tr>
<td>4.11(a)</td>
<td>Simulated pulse waveform from a gain-switched multiple QW laser with $N_w = 2$, $L = 65 \mu m$, $I = 0.2 \text{ Amp}$</td>
<td>109</td>
</tr>
<tr>
<td>4.11(b)</td>
<td>Output pulse waveform from a multiple QW laser with $N_w = 2$, $L = 65 \mu m$, $I = 0.1 \text{ Amp}$</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE No.</td>
<td>PAGE No.</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.12</td>
<td></td>
<td>a) Variation of gain with carrier density for various quantised levels
b) Observation of gain-switched picosecond pulse due to third quantised level transitions</td>
</tr>
<tr>
<td>4.13</td>
<td></td>
<td>Schematic diagram of perpendicular carrier transport in a QW laser illustrating the capture and release processes for electrons and holes</td>
</tr>
<tr>
<td>4.14</td>
<td></td>
<td>Conservation chart for the W-B hole burning model indicating the dominant rate processes for the W-B model</td>
</tr>
<tr>
<td>4.15</td>
<td></td>
<td>Equivalent circuit of W-B hole burning in QW laser</td>
</tr>
<tr>
<td>4.16</td>
<td></td>
<td>Simulated response to a dc sweep for different number of wells for (\eta = 1)</td>
</tr>
<tr>
<td>4.17</td>
<td></td>
<td>Simulated response to a dc sweep for different number of wells for (\eta = 2)</td>
</tr>
</tbody>
</table>