BIBLIOGRAPHY
BIBLIOGRAPHY


Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin-3-gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 1998; 129:173-179.

Chen JJ, Ye ZQ, Koo MW. Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line. BJU Int 2004a; 93:1082-1086.


Bibliography


Duthie SJ, Collins AR, Duthie GG, Dobson VL. Quercetin and Myrecitin protect against hydrogen peroxide induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat Res 1997a; 393:223-231.

Duthie SJ, Johnson W, Dobson VL. The effect of dietary constituents on DNA damage (strand breaks and oxidized pyrimidines) and growth in human cells. Mutat Res 1997b; 390:141-151.


Gutteridge JMC. Copper-phenanthroline induced site specific oxygen radical damage to DNA. Biochem J 1984; 218:983-985.

Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis inducing properties of plant derived polyphenolic compounds. IUBMB Life 2000; 50:167-171.


Bibliography


Bibliography


Jung YD, Ellis LM. Inhibition of tumor invasion and angiogenesis by epigallocatechin-3-gallate (EGCG), a major component of green tea. Int J Exp Path 2001; 82:309-316.

Kagawa TF, Geierstanger BH, Wang AHJ, Ho PS. Covalent modification of guanine bases in double stranded DNA: the 1: 2-AZ-DNA structure of


Khan NS, Hadi SM. Structural features of tannic acid important for DNA degradation in the presence of Cu(II). Mutagenesis 1998; 13:271-274.


Lambert JD, Lee MJ, Diamond L, Ju J, Hong J, Bose M, Newmark HL, Yang CS. Dose-dependent levels of epigallocatechin-3-gallate in human
Bibliography

colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 2006; 34:8-11.


Langcake P, Pryce RJ. The production of resveratrol by Vitis vinefera and other members of the vitaceae as a response to infection or injury. Physiol Plant Pathol 1976; 9:77-86.


Li Y, Trush MA. Reactive oxygen dependent DNA damage resulting from the oxidation of phenolic compounds by copper redox cycle mechanism. Cancer Res 1994; 54:1895-1898.


Liu RH. Health benefits of fruits and vegetables are from additive and synergistic combination of phytochemicals. Am J Clin Nutr 2003; 78:517S-520S.


Long LH, Clement MV, Halliwell B. Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-


Bibliography


Pryor WA. Why is hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has rare combination of high electrophilicity, thermochemical reactivity and a mode of production near DNA. Free Radic Biol Med 1988; 4:219-233.


Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell res 1989; 175:184-191.

Smets LA. Programmed cell death (apoptosis) and the response to anticancer drugs. Anticancer Drugs 1994; 5:3-9.


Surh YJ. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal polyphenolic substances. Mutat Res 1999; 428:305-327.


Verma AK, Johnson-Gould MN, Tanner MA. Inhibition of 7, 12-dimethyl benz (a) anthracene and N-nitrosomethyl-urea induced rat


Wani AA, Hadi SM. Partial purification and properties of an endonuclease from germinating pea seed specific for single stranded DNA. Arch Biochem Biophys 1979; 196:138-146.


Weinreb O, Mandel S, Youdim MB. Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea
polyphenol (-)-epigallocatechin-3-gallate and melatonin. Annals NY Acad Sci 2003; 993:351-361.


Zheng LF, Wei QY, Cai YJ, Fang JG, Zhou B, Yang L, Liu ZL. DNA damage induced by resveratrol and its synthetic analogs in the presence of