CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER I</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General aspects of inorganic nitrogen metabolism</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Metabolism of nitrate</td>
<td>5</td>
</tr>
<tr>
<td>Nitrate reductase</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1. Assimilatory nitrate reductase</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(a) Ferredoxin-nitrate reductase</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>(b) Pyridine nucleotide-dependent nitrate reductase</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2. Respiratory nitrate reductase</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Regulation of nitrate reductase activity</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Proposed mechanism for nitrate transport and reduction</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Mechanism of enzyme catalysis</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Applied research with nitrate reductase</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Nitrite reductase</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>1. Bacteria</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2. Fungi</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>3. Algae</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>4. Higher plants</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Prosthetic groups</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Mechanism of enzyme catalysis</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

PRESENT INVESTIGATIONS

<table>
<thead>
<tr>
<th>CHAPTER II</th>
<th>MATERIALS AND METHODS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Materials</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Methods</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Organism</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Maintenance and propagation of culture</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Basal liquid medium for growth</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Growth conditions and collection of cells</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Definition of unit of nitrate reductase activity and specific activity</td>
<td>66</td>
</tr>
</tbody>
</table>
Estimation of nitrate reductase activity

Definition of unit of nitrite reductase activity and specific activity

Estimation of nitrite reductase activity

Estimation of catalase activity

Protein determination

(a) Turbidimetric method

(b) Method of Lowry et al. (1951)

(c) Optical method

Ammonium sulfate fractionation

Gel filtration studies

Polyacrylamide gel electrophoresis

Preparative polyacrylamide gel electrophoresis

CHAPTER III PURIFICATION AND CHARACTERIZATION OF Achromobacter fischeri NITRATE REDUCTASE

Summary

Introduction

Results

Preparation of crude extract

Ammonium sulfate precipitation

Protamine sulfate treatment

Extraction of nitrate reductase from protamine sulfate precipitate

Ammonium sulfate fractionation

First hydroxylapatite column chromatography

Second hydroxylapatite column chromatography

Preparative polyacrylamide gel electrophoresis

Criteria of purity

Determination of relative molecular mass of purified nitrate reductase from A. fischeri

1. Polyacrylamide gel electrophoresis

2. SDS-gel electrophoresis

3. Determination of subunit nature by SDS-gel electrophoresis

4. Gel filtration (Bio-Gel P-150)
5. Gel filtration on Sephadex G-200
Stokes' radius of *A. fischeri* nitrate reductase
Discussion

CHAPTER IV PURIFICATION OF *A. fischeri* 101 - 108
NITRITE REDUCTASE

Summary
Introduction
Purification procedure
 Crude extract preparation
 Ammonium sulfate precipitation
 Protamine sulfate treatment
 Extraction of nitrite reductase from protamine sulfate precipitate
 Ammonium sulfate fractionation
 First chromatography on hydroxylapatite column
 Second chromatography on hydroxylapatite column
 Preparative polyacrylamide gel electrophoresis

CHAPTER V PRESENCE OF ESSENTIAL HISTIDINE 109 - 127
RESIDUES AT THE ACTIVE SITE OF *A. fischeri* NITRITE REDUCTASE

Summary
Introduction
Methods
 Treatment of *A. fischeri* nitrite reductase with DEPC
 Spectrophotometric study of *A. fischeri* nitrite reductase inhibition by DEPC
 Effect of substrate on inhibition during treatment of *A. fischeri* nitrite reductase with DEPC
 Effect of hydroxylamine on reactivation of DEPC-inactivated *A. fischeri* nitrite reductase
 Estimation of free sulfhydryl groups
 Kinetics
Results

Inactivation of nitrite reductase with DEPC 117
Spectrophotometric study of inactivation of nitrite reductase by DEPC 118
Effect of hydroxylamine on reactivation of DEPC-inactivated enzyme 121
Effect of substrate on inactivation of nitrite reductase by DEPC 121
Effect of DEPC on sulfhydryl groups modification 122
Effect of pH on kinetic parameters 122
Number of histidyl residues essential for activity 123
Discussion 124

CHAPTER VI STUDIES ON (a) THE PHYSIOLOGICAL ELECTRON DONOR OF A. fischeri NITRITE REDUCTASE AND (b) INTERMEDIATES DURING ENZYMATIC REDUCTION OF NITRITE TO AMMONIA

Section 1: Electron paramagnetic resonance studies of heme c and its nitrosyl derivative in A. fischeri nitrite reductase and mechanism of nitrite reduction

Summary 128
General introduction to EPR theory 129
g-value 130
Nuclear hyperfine splitting 131
EPR studies on nitrite reductases 132
Methods 134
Sample preparation for EPR spectroscopy 134
Results 135
EPR spectra of the oxidized enzyme 135
EPR spectra of nitrosyl heme 138
EPR spectra observed under turnover conditions 140
Discussion 141
Section 2: Status of hydroxylamine as an intermediate in the reduction of nitrite to ammonia by A. fischeri nitrite reductase

Introduction 146
Methods 148
Preparation and analysis of oxime 148
Estimation of $^{15}\text{NH}_3$ produced from $^{15}\text{NO}_2^-$ by nitrite reductase 149
Results and Discussion 150

Section 3: Flavodoxin as likely physiological electron donor for A. fischeri nitrite reductase

Introduction 153
Methods 154
NADPH-flavodoxin linked nitrite reductase assay system 154
Results 155
Discussion 156

SUMMARY AND CONCLUSION 159

BIBLIOGRAPHY 166